December  2014, 4(4): 401-449. doi: 10.3934/mcrf.2014.4.401

Exact controllability of scalar conservation laws with strict convex flux

1. 

Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Post Bag No 6503, Sharadanagar, Bangalore - 560065, India, India, India

Received  February 2012 Revised  February 2014 Published  September 2014

We consider the scalar conservation law with strict convex flux in one space dimension. In this paper we study the exact controllability of entropy solution by using initial or boundary data control. Some partial results have been obtained in [5],[23]. Here we investigate the precise conditions under which, the exact controllability problem admits a solution. The basic ingredients in the proof of these results are, Lax-Oleinik [15] explicit formula and finer properties of the characteristics curves.
Citation: Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401
References:
[1]

Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux,, J. Hyperbolic Differ. Equ., 11 (2014), 477.   Google Scholar

[2]

Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux,, J. Hyperbolic Differ. Equ., 9 (2012), 571.  doi: 10.1142/S0219891612500191.  Google Scholar

[3]

Adimurthi and G. D. Veerappa Gowda, Conservation Law with discontinuous flux,, J.Math, 43 (2003), 27.   Google Scholar

[4]

F. Ancona, O. Glass and K. T. Nguyen, Lower compactness estimates for scalar balance laws,, Comm. Pure Appl. Math, 65 (2012), 1303.  doi: 10.1002/cpa.21406.  Google Scholar

[5]

F. Ancona and A. Marson, On the attainability set for scalar non linear conservation laws with boundary control,, SIAM J.Control Optim, 36 (1998), 290.  doi: 10.1137/S0363012996304407.  Google Scholar

[6]

F. Ancona and A. Marson, Scalar non linear conservation laws with integrable boundary data,, Nonlinear Anal, 35 (1999), 687.  doi: 10.1016/S0362-546X(97)00697-4.  Google Scholar

[7]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017.  doi: 10.1080/03605307908820117.  Google Scholar

[8]

A. Bressan and A. Marson, A maximum principle for optimally controlled systems of conservation laws,, Rend. Sem. Mat. Univ. Padova, 94 (1995), 79.   Google Scholar

[9]

T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics,, Pitman Monographs and Surveys in Pure and Applied Mathematics, (1989).   Google Scholar

[10]

M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations,, SIAM J. Control Optim, 48 (2009), 1567.  doi: 10.1137/070685749.  Google Scholar

[11]

J. M. Coron, Global asymptotic stabilization for controllable systems without drift,, Mth. Control signals systems, 5 (1992), 295.  doi: 10.1007/BF01211563.  Google Scholar

[12]

C. M. Dafermos, Characteristics in hyperbolic conservations laws, A study of the structure and the asymptotic behavior of solutions,, Research notes in maths, I (1977), 1.   Google Scholar

[13]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, $2^{nd}$ edition, (2000).   Google Scholar

[14]

J. I. Diaz, Obstruction and some approximate controllability results for the Burgers equation and related problems,, Control of partial differential equations and applications, (1996), 63.   Google Scholar

[15]

L. C. Evans, Partial Differential Equations,, Graduate studies in Mathematics, (1998).   Google Scholar

[16]

E. Fernández-Cara and S. Guerrero, Remarks on the null controllability of the Burgers equation,, C. R. Math. Acad. Sci. Paris, 341 (2005), 229.  doi: 10.1016/j.crma.2005.06.005.  Google Scholar

[17]

A. Fursikov and O. Yu. Imanuvilov, On controllability of certain systems simulating a fluid flow,, Flow control, (1995), 149.  doi: 10.1007/978-1-4612-2526-3_7.  Google Scholar

[18]

S. S. Ghoshal, Finer Analysis of Characteristic Curves, and Its Applications to Shock Profile, Exact and Optimal Controllability of Conservation Law with Strict convex Fluxes,, Ph.D thesis, (2012).   Google Scholar

[19]

O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation,, SIAM J. Control optim., 46 (2007), 1211.  doi: 10.1137/060664677.  Google Scholar

[20]

E. Godleweski and P. A. Raviant, Hyperbolic Systems of Conservation Laws,, Mathematiques and Applications, (1991).   Google Scholar

[21]

S. Guerrero and O. Y. Immunauvilov, Remarks on global controllability for the Burgers equation with two control forces,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 897.  doi: 10.1016/j.anihpc.2006.06.010.  Google Scholar

[22]

E. Hopf, The partial differential equation $u_t + u u_x = \mu u_{x x}$,, Comm. Pure Appl. Math, 3 (1950), 201.   Google Scholar

[23]

T. Horsin, On the controllability of the Burger equation,, ESIAM, 3 (1998), 83.  doi: 10.1051/cocv:1998103.  Google Scholar

[24]

K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for the solution of Convex conservation laws with boundary condition,, Duke Math.J., 62 (1991), 401.  doi: 10.1215/S0012-7094-91-06216-2.  Google Scholar

[25]

S. N. Kružkov, First order quasilinear equations with several independent variables,, (Russian), 81 (1970), 228.   Google Scholar

[26]

P. D. Lax, Hyperbolic systems of conservation Laws II,, comm Pure Appl. Math, 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

show all references

References:
[1]

Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux,, J. Hyperbolic Differ. Equ., 11 (2014), 477.   Google Scholar

[2]

Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux,, J. Hyperbolic Differ. Equ., 9 (2012), 571.  doi: 10.1142/S0219891612500191.  Google Scholar

[3]

Adimurthi and G. D. Veerappa Gowda, Conservation Law with discontinuous flux,, J.Math, 43 (2003), 27.   Google Scholar

[4]

F. Ancona, O. Glass and K. T. Nguyen, Lower compactness estimates for scalar balance laws,, Comm. Pure Appl. Math, 65 (2012), 1303.  doi: 10.1002/cpa.21406.  Google Scholar

[5]

F. Ancona and A. Marson, On the attainability set for scalar non linear conservation laws with boundary control,, SIAM J.Control Optim, 36 (1998), 290.  doi: 10.1137/S0363012996304407.  Google Scholar

[6]

F. Ancona and A. Marson, Scalar non linear conservation laws with integrable boundary data,, Nonlinear Anal, 35 (1999), 687.  doi: 10.1016/S0362-546X(97)00697-4.  Google Scholar

[7]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017.  doi: 10.1080/03605307908820117.  Google Scholar

[8]

A. Bressan and A. Marson, A maximum principle for optimally controlled systems of conservation laws,, Rend. Sem. Mat. Univ. Padova, 94 (1995), 79.   Google Scholar

[9]

T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics,, Pitman Monographs and Surveys in Pure and Applied Mathematics, (1989).   Google Scholar

[10]

M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations,, SIAM J. Control Optim, 48 (2009), 1567.  doi: 10.1137/070685749.  Google Scholar

[11]

J. M. Coron, Global asymptotic stabilization for controllable systems without drift,, Mth. Control signals systems, 5 (1992), 295.  doi: 10.1007/BF01211563.  Google Scholar

[12]

C. M. Dafermos, Characteristics in hyperbolic conservations laws, A study of the structure and the asymptotic behavior of solutions,, Research notes in maths, I (1977), 1.   Google Scholar

[13]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, $2^{nd}$ edition, (2000).   Google Scholar

[14]

J. I. Diaz, Obstruction and some approximate controllability results for the Burgers equation and related problems,, Control of partial differential equations and applications, (1996), 63.   Google Scholar

[15]

L. C. Evans, Partial Differential Equations,, Graduate studies in Mathematics, (1998).   Google Scholar

[16]

E. Fernández-Cara and S. Guerrero, Remarks on the null controllability of the Burgers equation,, C. R. Math. Acad. Sci. Paris, 341 (2005), 229.  doi: 10.1016/j.crma.2005.06.005.  Google Scholar

[17]

A. Fursikov and O. Yu. Imanuvilov, On controllability of certain systems simulating a fluid flow,, Flow control, (1995), 149.  doi: 10.1007/978-1-4612-2526-3_7.  Google Scholar

[18]

S. S. Ghoshal, Finer Analysis of Characteristic Curves, and Its Applications to Shock Profile, Exact and Optimal Controllability of Conservation Law with Strict convex Fluxes,, Ph.D thesis, (2012).   Google Scholar

[19]

O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation,, SIAM J. Control optim., 46 (2007), 1211.  doi: 10.1137/060664677.  Google Scholar

[20]

E. Godleweski and P. A. Raviant, Hyperbolic Systems of Conservation Laws,, Mathematiques and Applications, (1991).   Google Scholar

[21]

S. Guerrero and O. Y. Immunauvilov, Remarks on global controllability for the Burgers equation with two control forces,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 897.  doi: 10.1016/j.anihpc.2006.06.010.  Google Scholar

[22]

E. Hopf, The partial differential equation $u_t + u u_x = \mu u_{x x}$,, Comm. Pure Appl. Math, 3 (1950), 201.   Google Scholar

[23]

T. Horsin, On the controllability of the Burger equation,, ESIAM, 3 (1998), 83.  doi: 10.1051/cocv:1998103.  Google Scholar

[24]

K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for the solution of Convex conservation laws with boundary condition,, Duke Math.J., 62 (1991), 401.  doi: 10.1215/S0012-7094-91-06216-2.  Google Scholar

[25]

S. N. Kružkov, First order quasilinear equations with several independent variables,, (Russian), 81 (1970), 228.   Google Scholar

[26]

P. D. Lax, Hyperbolic systems of conservation Laws II,, comm Pure Appl. Math, 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[3]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[4]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (11)

[Back to Top]