-
Previous Article
Controllability of fast diffusion coupled parabolic systems
- MCRF Home
- This Issue
-
Next Article
Exact controllability of scalar conservation laws with strict convex flux
Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain
1. | Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092 - El Manar 2, Tunis, Tunisia |
2. | Department of Mathematics and Statistics, College of Sciences, King Fahd University of Petroleum and Minerals, P.O. Box 5005, Dhahran 31261, Saudi Arabia |
References:
[1] |
M. Aassila, Strong asymptotic stability of isotropic elasticity systems with internal damping, Acta Sci. Math. (Szeged), 64 (1998), 103-108. |
[2] |
F. Alabau-Boussouira and V. Komornik, Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control and Optim., 37 (1999), 521-542.
doi: 10.1137/S0363012996313835. |
[3] |
F. Alabau-Boussouira, P. Cannarasa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equa., 2 (2002), 127-150.
doi: 10.1007/s00028-002-8083-0. |
[4] |
A. Bchatnia and M. Daoulatli, Behavior of the energy for Lamé systems in bounded domains with nonlinear damping and external force, Electron. J. Diff. Equa., 2013 (2013), 1-17. |
[5] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308. |
[6] |
C. Giorgi, J. E. Muoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.
doi: 10.1006/jmaa.2001.7437. |
[7] |
A. Guesmia, Energy decay for a damped nonlinear coupled system, J. Math. Anal. Appl., 239 (1999), 38-48.
doi: 10.1006/jmaa.1999.6534. |
[8] |
A. Guesmia, On the decay estimates for elasticity systems with some localized dissipations, Asymptotic Analysis, 22 (2000), 1-13. |
[9] |
A. Guesmia, Contributions à la Contrô Labilité Exacte et la Stabilisation Des SystèMes D'évolution, Ph.D. Thesis, Louis Pasteur University, France, 2000. |
[10] |
A. Guesmia, Quelques résultats de stabilisation indirecte des systèmes couplés non dissipatifs, Bull. Belg. Math. Soc., 15 (2008), 479-497. |
[11] |
A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.
doi: 10.1016/j.jmaa.2011.04.079. |
[12] |
A. Guesmia and S. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and infinite history memories, Nonlinear Analysis, 13 (2012), 476-485.
doi: 10.1016/j.nonrwa.2011.08.004. |
[13] |
A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems, Electron. J. Diff. Equa., 2012 (2012), 1-45. |
[14] |
M. A. Horn, Implications of sharp trace regularity results on boundary Stabilization of the system of linear elasticity, J. Math. Anal. Appl., 223 (1998), 126-150.
doi: 10.1006/jmaa.1998.5963. |
[15] |
M. A. Horn, Stabilization of the dynamic system of elasticity by nonlinear boundary feedback, Internal Ser. Numer. Math., 133 (1999), 201-210. |
[16] |
B. V. Kapitonov, Uniform stabilization and exact controllability for a class of coupled hyperbolic systems, Comp. Appl. Math., 15 (1996), 199-212. |
[17] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994. |
[18] |
V. Komornik, Boundary stabilization of linear elasticity systems, Lecture Notes in Pure and Appl. Math., 174 (1996), 135-146. |
[19] |
J. E. Lagnese, Boundary stabilization of linear elastodynamic systems, SIAM J. Control and Optim., 21 (1983), 968-984.
doi: 10.1137/0321059. |
[20] |
J. E. Lagnese, Uniform asymptotic energy estimates for solution of the equation of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Anal. T. M. A., 16 (1991), 35-54.
doi: 10.1016/0362-546X(91)90129-O. |
[21] |
P. Martinez, Stabilisation de Systèmes Distribués Semi Linéaires: Domaines Presques Étoilés et Inégalités Intégrales généralisées, Ph. D. Thesis, Louis Pasteur University, France, 1998. |
[22] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[23] |
L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 (2012), 45-60.
doi: 10.3934/mcrf.2012.2.45. |
show all references
References:
[1] |
M. Aassila, Strong asymptotic stability of isotropic elasticity systems with internal damping, Acta Sci. Math. (Szeged), 64 (1998), 103-108. |
[2] |
F. Alabau-Boussouira and V. Komornik, Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control and Optim., 37 (1999), 521-542.
doi: 10.1137/S0363012996313835. |
[3] |
F. Alabau-Boussouira, P. Cannarasa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equa., 2 (2002), 127-150.
doi: 10.1007/s00028-002-8083-0. |
[4] |
A. Bchatnia and M. Daoulatli, Behavior of the energy for Lamé systems in bounded domains with nonlinear damping and external force, Electron. J. Diff. Equa., 2013 (2013), 1-17. |
[5] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308. |
[6] |
C. Giorgi, J. E. Muoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.
doi: 10.1006/jmaa.2001.7437. |
[7] |
A. Guesmia, Energy decay for a damped nonlinear coupled system, J. Math. Anal. Appl., 239 (1999), 38-48.
doi: 10.1006/jmaa.1999.6534. |
[8] |
A. Guesmia, On the decay estimates for elasticity systems with some localized dissipations, Asymptotic Analysis, 22 (2000), 1-13. |
[9] |
A. Guesmia, Contributions à la Contrô Labilité Exacte et la Stabilisation Des SystèMes D'évolution, Ph.D. Thesis, Louis Pasteur University, France, 2000. |
[10] |
A. Guesmia, Quelques résultats de stabilisation indirecte des systèmes couplés non dissipatifs, Bull. Belg. Math. Soc., 15 (2008), 479-497. |
[11] |
A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.
doi: 10.1016/j.jmaa.2011.04.079. |
[12] |
A. Guesmia and S. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and infinite history memories, Nonlinear Analysis, 13 (2012), 476-485.
doi: 10.1016/j.nonrwa.2011.08.004. |
[13] |
A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems, Electron. J. Diff. Equa., 2012 (2012), 1-45. |
[14] |
M. A. Horn, Implications of sharp trace regularity results on boundary Stabilization of the system of linear elasticity, J. Math. Anal. Appl., 223 (1998), 126-150.
doi: 10.1006/jmaa.1998.5963. |
[15] |
M. A. Horn, Stabilization of the dynamic system of elasticity by nonlinear boundary feedback, Internal Ser. Numer. Math., 133 (1999), 201-210. |
[16] |
B. V. Kapitonov, Uniform stabilization and exact controllability for a class of coupled hyperbolic systems, Comp. Appl. Math., 15 (1996), 199-212. |
[17] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994. |
[18] |
V. Komornik, Boundary stabilization of linear elasticity systems, Lecture Notes in Pure and Appl. Math., 174 (1996), 135-146. |
[19] |
J. E. Lagnese, Boundary stabilization of linear elastodynamic systems, SIAM J. Control and Optim., 21 (1983), 968-984.
doi: 10.1137/0321059. |
[20] |
J. E. Lagnese, Uniform asymptotic energy estimates for solution of the equation of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Anal. T. M. A., 16 (1991), 35-54.
doi: 10.1016/0362-546X(91)90129-O. |
[21] |
P. Martinez, Stabilisation de Systèmes Distribués Semi Linéaires: Domaines Presques Étoilés et Inégalités Intégrales généralisées, Ph. D. Thesis, Louis Pasteur University, France, 1998. |
[22] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[23] |
L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 (2012), 45-60.
doi: 10.3934/mcrf.2012.2.45. |
[1] |
George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417 |
[2] |
Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations and Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035 |
[3] |
Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457 |
[4] |
George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151 |
[5] |
Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515 |
[6] |
Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297 |
[7] |
Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations and Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011 |
[8] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057 |
[9] |
Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259 |
[10] |
Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 |
[11] |
Fuyi Xu, Meiling Chi, Lishan Liu, Yonghong Wu. On the well-posedness and decay rates of strong solutions to a multi-dimensional non-conservative viscous compressible two-fluid system. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2515-2559. doi: 10.3934/dcds.2020140 |
[12] |
Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028 |
[13] |
Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401 |
[14] |
Carlos F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and applications. Networks and Heterogeneous Media, 2006, 1 (4) : 601-619. doi: 10.3934/nhm.2006.1.601 |
[15] |
Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17 (1) : 101-128. doi: 10.3934/nhm.2021025 |
[16] |
Salim A. Messaoudi, Jamilu Hashim Hassan. New general decay results in a finite-memory bresse system. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1637-1662. doi: 10.3934/cpaa.2019078 |
[17] |
Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control and Related Fields, 2021, 11 (2) : 353-371. doi: 10.3934/mcrf.2020040 |
[18] |
Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407 |
[19] |
Seung-Yeal Ha, Jinyeong Park, Xiongtao Zhang. A global well-posedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1317-1344. doi: 10.3934/dcdsb.2019229 |
[20] |
Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]