December  2014, 4(4): 451-463. doi: 10.3934/mcrf.2014.4.451

Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain

1. 

Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092 - El Manar 2, Tunis, Tunisia

2. 

Department of Mathematics and Statistics, College of Sciences, King Fahd University of Petroleum and Minerals, P.O. Box 5005, Dhahran 31261, Saudi Arabia

Received  July 2013 Revised  February 2014 Published  September 2014

In this work, we consider the Lamé system in 3-dimension bounded domain with infinite memories. We prove, under some appropriate assumptions, that this system is well-posed and stable, and we get a general and precise estimate on the convergence of solutions to zero at infinity in terms of the growth of the infinite memories.
Citation: Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451
References:
[1]

M. Aassila, Strong asymptotic stability of isotropic elasticity systems with internal damping,, Acta Sci. Math. (Szeged), 64 (1998), 103.   Google Scholar

[2]

F. Alabau-Boussouira and V. Komornik, Boundary observability, controllability and stabilization of linear elastodynamic systems,, SIAM J. Control and Optim., 37 (1999), 521.  doi: 10.1137/S0363012996313835.  Google Scholar

[3]

F. Alabau-Boussouira, P. Cannarasa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations,, J. Evol. Equa., 2 (2002), 127.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[4]

A. Bchatnia and M. Daoulatli, Behavior of the energy for Lamé systems in bounded domains with nonlinear damping and external force,, Electron. J. Diff. Equa., 2013 (2013), 1.   Google Scholar

[5]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Ration. Mech. Anal., 37 (1970), 297.   Google Scholar

[6]

C. Giorgi, J. E. Muoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity,, J. Math. Anal. Appl., 260 (2001), 83.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[7]

A. Guesmia, Energy decay for a damped nonlinear coupled system,, J. Math. Anal. Appl., 239 (1999), 38.  doi: 10.1006/jmaa.1999.6534.  Google Scholar

[8]

A. Guesmia, On the decay estimates for elasticity systems with some localized dissipations,, Asymptotic Analysis, 22 (2000), 1.   Google Scholar

[9]

A. Guesmia, Contributions à la Contrô Labilité Exacte et la Stabilisation Des SystèMes D'évolution,, Ph.D. Thesis, (2000).   Google Scholar

[10]

A. Guesmia, Quelques résultats de stabilisation indirecte des systèmes couplés non dissipatifs,, Bull. Belg. Math. Soc., 15 (2008), 479.   Google Scholar

[11]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory,, J. Math. Anal. Appl., 382 (2011), 748.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[12]

A. Guesmia and S. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and infinite history memories,, Nonlinear Analysis, 13 (2012), 476.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[13]

A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems,, Electron. J. Diff. Equa., 2012 (2012), 1.   Google Scholar

[14]

M. A. Horn, Implications of sharp trace regularity results on boundary Stabilization of the system of linear elasticity,, J. Math. Anal. Appl., 223 (1998), 126.  doi: 10.1006/jmaa.1998.5963.  Google Scholar

[15]

M. A. Horn, Stabilization of the dynamic system of elasticity by nonlinear boundary feedback,, Internal Ser. Numer. Math., 133 (1999), 201.   Google Scholar

[16]

B. V. Kapitonov, Uniform stabilization and exact controllability for a class of coupled hyperbolic systems,, Comp. Appl. Math., 15 (1996), 199.   Google Scholar

[17]

V. Komornik, Exact Controllability and Stabilization., The Multiplier Method, (1994).   Google Scholar

[18]

V. Komornik, Boundary stabilization of linear elasticity systems,, Lecture Notes in Pure and Appl. Math., 174 (1996), 135.   Google Scholar

[19]

J. E. Lagnese, Boundary stabilization of linear elastodynamic systems,, SIAM J. Control and Optim., 21 (1983), 968.  doi: 10.1137/0321059.  Google Scholar

[20]

J. E. Lagnese, Uniform asymptotic energy estimates for solution of the equation of dynamic plane elasticity with nonlinear dissipation at the boundary,, Nonlinear Anal. T. M. A., 16 (1991), 35.  doi: 10.1016/0362-546X(91)90129-O.  Google Scholar

[21]

P. Martinez, Stabilisation de Systèmes Distribués Semi Linéaires: Domaines Presques Étoilés et Inégalités Intégrales généralisées,, Ph. D. Thesis, (1998).   Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms,, Math. Control Relat. Fields, 2 (2012), 45.  doi: 10.3934/mcrf.2012.2.45.  Google Scholar

show all references

References:
[1]

M. Aassila, Strong asymptotic stability of isotropic elasticity systems with internal damping,, Acta Sci. Math. (Szeged), 64 (1998), 103.   Google Scholar

[2]

F. Alabau-Boussouira and V. Komornik, Boundary observability, controllability and stabilization of linear elastodynamic systems,, SIAM J. Control and Optim., 37 (1999), 521.  doi: 10.1137/S0363012996313835.  Google Scholar

[3]

F. Alabau-Boussouira, P. Cannarasa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations,, J. Evol. Equa., 2 (2002), 127.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[4]

A. Bchatnia and M. Daoulatli, Behavior of the energy for Lamé systems in bounded domains with nonlinear damping and external force,, Electron. J. Diff. Equa., 2013 (2013), 1.   Google Scholar

[5]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Ration. Mech. Anal., 37 (1970), 297.   Google Scholar

[6]

C. Giorgi, J. E. Muoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity,, J. Math. Anal. Appl., 260 (2001), 83.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[7]

A. Guesmia, Energy decay for a damped nonlinear coupled system,, J. Math. Anal. Appl., 239 (1999), 38.  doi: 10.1006/jmaa.1999.6534.  Google Scholar

[8]

A. Guesmia, On the decay estimates for elasticity systems with some localized dissipations,, Asymptotic Analysis, 22 (2000), 1.   Google Scholar

[9]

A. Guesmia, Contributions à la Contrô Labilité Exacte et la Stabilisation Des SystèMes D'évolution,, Ph.D. Thesis, (2000).   Google Scholar

[10]

A. Guesmia, Quelques résultats de stabilisation indirecte des systèmes couplés non dissipatifs,, Bull. Belg. Math. Soc., 15 (2008), 479.   Google Scholar

[11]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory,, J. Math. Anal. Appl., 382 (2011), 748.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[12]

A. Guesmia and S. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and infinite history memories,, Nonlinear Analysis, 13 (2012), 476.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[13]

A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems,, Electron. J. Diff. Equa., 2012 (2012), 1.   Google Scholar

[14]

M. A. Horn, Implications of sharp trace regularity results on boundary Stabilization of the system of linear elasticity,, J. Math. Anal. Appl., 223 (1998), 126.  doi: 10.1006/jmaa.1998.5963.  Google Scholar

[15]

M. A. Horn, Stabilization of the dynamic system of elasticity by nonlinear boundary feedback,, Internal Ser. Numer. Math., 133 (1999), 201.   Google Scholar

[16]

B. V. Kapitonov, Uniform stabilization and exact controllability for a class of coupled hyperbolic systems,, Comp. Appl. Math., 15 (1996), 199.   Google Scholar

[17]

V. Komornik, Exact Controllability and Stabilization., The Multiplier Method, (1994).   Google Scholar

[18]

V. Komornik, Boundary stabilization of linear elasticity systems,, Lecture Notes in Pure and Appl. Math., 174 (1996), 135.   Google Scholar

[19]

J. E. Lagnese, Boundary stabilization of linear elastodynamic systems,, SIAM J. Control and Optim., 21 (1983), 968.  doi: 10.1137/0321059.  Google Scholar

[20]

J. E. Lagnese, Uniform asymptotic energy estimates for solution of the equation of dynamic plane elasticity with nonlinear dissipation at the boundary,, Nonlinear Anal. T. M. A., 16 (1991), 35.  doi: 10.1016/0362-546X(91)90129-O.  Google Scholar

[21]

P. Martinez, Stabilisation de Systèmes Distribués Semi Linéaires: Domaines Presques Étoilés et Inégalités Intégrales généralisées,, Ph. D. Thesis, (1998).   Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms,, Math. Control Relat. Fields, 2 (2012), 45.  doi: 10.3934/mcrf.2012.2.45.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[8]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[13]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[14]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[16]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[17]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[18]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]