December  2014, 4(4): 465-479. doi: 10.3934/mcrf.2014.4.465

Controllability of fast diffusion coupled parabolic systems

1. 

BCAM - Basque Center for Applied Mathematics, Mazarredo 14, E-48009 Bilbao, Basque Country, Spain

2. 

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie - Paris 6, Boîte Corrier 187, F-75252, Paris Cedex 05, France

3. 

Laboratoire de Mathématiques de Versailles, Université de Versailles - St. Quentin, 45 Avenue des Etats Unis, 78035 Versailles

Received  March 2013 Revised  October 2013 Published  September 2014

In this work we are concerned with the null controllability of coupled parabolic systems depending on a parameter and converging to a parabolic-elliptic system. We show the uniform null controllability of the family of coupled parabolic systems with respect to the degenerating parameter.
Citation: Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control & Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465
References:
[1]

F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force,, J. Math. Anal. Appl., 320 (2006), 928.  doi: 10.1016/j.jmaa.2005.07.060.  Google Scholar

[2]

M. Bendahmane and F. W. Chaves-Silva, Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model,, preprint, ().   Google Scholar

[3]

J.-M. Coron and S. Guerrero, A singular optimal control: A linear 1-D parabolic hyperbolic example,, Asymptot. Analisys, 44 (2005), 237.   Google Scholar

[4]

E. Fernandéz-Cara, J. Limaco and S. B. de Menezes, Null controllability for a parabolic-elliptic coupled system,, Bull. Braz. Math. Soc. (N.S.), 44 (2013), 285.  doi: 10.1007/s00574-013-0014-x.  Google Scholar

[5]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series 34, (1996).   Google Scholar

[6]

O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit,, J. Funct. Analysis, 258 (2010), 852.  doi: 10.1016/j.jfa.2009.06.035.  Google Scholar

[7]

M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force,, Asymptot. Anal., 46 (2006), 123.   Google Scholar

[8]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force,, SIAM J. Control Optim., 46 (2007), 379.  doi: 10.1137/060653135.  Google Scholar

[9]

S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation,, Comm. Partial Differential Equations, 32 (2007), 1813.  doi: 10.1080/03605300701743756.  Google Scholar

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I,, Jahresber. Dtsch. Math.-Ver, 105 (2003), 103.   Google Scholar

[11]

A. Lopes, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations,, J. Math. Pures Appl., 79 (2000), 741.  doi: 10.1016/S0021-7824(99)00144-0.  Google Scholar

[12]

J.-L. Lions, Some Methods in Mathematical Analysis of System and their Control,, Science Press, (1981).   Google Scholar

[13]

J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications,, volumes 1, (1968).   Google Scholar

show all references

References:
[1]

F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force,, J. Math. Anal. Appl., 320 (2006), 928.  doi: 10.1016/j.jmaa.2005.07.060.  Google Scholar

[2]

M. Bendahmane and F. W. Chaves-Silva, Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model,, preprint, ().   Google Scholar

[3]

J.-M. Coron and S. Guerrero, A singular optimal control: A linear 1-D parabolic hyperbolic example,, Asymptot. Analisys, 44 (2005), 237.   Google Scholar

[4]

E. Fernandéz-Cara, J. Limaco and S. B. de Menezes, Null controllability for a parabolic-elliptic coupled system,, Bull. Braz. Math. Soc. (N.S.), 44 (2013), 285.  doi: 10.1007/s00574-013-0014-x.  Google Scholar

[5]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series 34, (1996).   Google Scholar

[6]

O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit,, J. Funct. Analysis, 258 (2010), 852.  doi: 10.1016/j.jfa.2009.06.035.  Google Scholar

[7]

M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force,, Asymptot. Anal., 46 (2006), 123.   Google Scholar

[8]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force,, SIAM J. Control Optim., 46 (2007), 379.  doi: 10.1137/060653135.  Google Scholar

[9]

S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation,, Comm. Partial Differential Equations, 32 (2007), 1813.  doi: 10.1080/03605300701743756.  Google Scholar

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I,, Jahresber. Dtsch. Math.-Ver, 105 (2003), 103.   Google Scholar

[11]

A. Lopes, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations,, J. Math. Pures Appl., 79 (2000), 741.  doi: 10.1016/S0021-7824(99)00144-0.  Google Scholar

[12]

J.-L. Lions, Some Methods in Mathematical Analysis of System and their Control,, Science Press, (1981).   Google Scholar

[13]

J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications,, volumes 1, (1968).   Google Scholar

[1]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[4]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[5]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[6]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[7]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[8]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[11]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[12]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[13]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[14]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[15]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[16]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[17]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[18]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[19]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[20]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (3)

[Back to Top]