December  2014, 4(4): 465-479. doi: 10.3934/mcrf.2014.4.465

Controllability of fast diffusion coupled parabolic systems

1. 

BCAM - Basque Center for Applied Mathematics, Mazarredo 14, E-48009 Bilbao, Basque Country, Spain

2. 

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie - Paris 6, Boîte Corrier 187, F-75252, Paris Cedex 05, France

3. 

Laboratoire de Mathématiques de Versailles, Université de Versailles - St. Quentin, 45 Avenue des Etats Unis, 78035 Versailles

Received  March 2013 Revised  October 2013 Published  September 2014

In this work we are concerned with the null controllability of coupled parabolic systems depending on a parameter and converging to a parabolic-elliptic system. We show the uniform null controllability of the family of coupled parabolic systems with respect to the degenerating parameter.
Citation: Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control & Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465
References:
[1]

F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force,, J. Math. Anal. Appl., 320 (2006), 928.  doi: 10.1016/j.jmaa.2005.07.060.  Google Scholar

[2]

M. Bendahmane and F. W. Chaves-Silva, Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model,, preprint, ().   Google Scholar

[3]

J.-M. Coron and S. Guerrero, A singular optimal control: A linear 1-D parabolic hyperbolic example,, Asymptot. Analisys, 44 (2005), 237.   Google Scholar

[4]

E. Fernandéz-Cara, J. Limaco and S. B. de Menezes, Null controllability for a parabolic-elliptic coupled system,, Bull. Braz. Math. Soc. (N.S.), 44 (2013), 285.  doi: 10.1007/s00574-013-0014-x.  Google Scholar

[5]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series 34, (1996).   Google Scholar

[6]

O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit,, J. Funct. Analysis, 258 (2010), 852.  doi: 10.1016/j.jfa.2009.06.035.  Google Scholar

[7]

M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force,, Asymptot. Anal., 46 (2006), 123.   Google Scholar

[8]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force,, SIAM J. Control Optim., 46 (2007), 379.  doi: 10.1137/060653135.  Google Scholar

[9]

S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation,, Comm. Partial Differential Equations, 32 (2007), 1813.  doi: 10.1080/03605300701743756.  Google Scholar

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I,, Jahresber. Dtsch. Math.-Ver, 105 (2003), 103.   Google Scholar

[11]

A. Lopes, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations,, J. Math. Pures Appl., 79 (2000), 741.  doi: 10.1016/S0021-7824(99)00144-0.  Google Scholar

[12]

J.-L. Lions, Some Methods in Mathematical Analysis of System and their Control,, Science Press, (1981).   Google Scholar

[13]

J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications,, volumes 1, (1968).   Google Scholar

show all references

References:
[1]

F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force,, J. Math. Anal. Appl., 320 (2006), 928.  doi: 10.1016/j.jmaa.2005.07.060.  Google Scholar

[2]

M. Bendahmane and F. W. Chaves-Silva, Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model,, preprint, ().   Google Scholar

[3]

J.-M. Coron and S. Guerrero, A singular optimal control: A linear 1-D parabolic hyperbolic example,, Asymptot. Analisys, 44 (2005), 237.   Google Scholar

[4]

E. Fernandéz-Cara, J. Limaco and S. B. de Menezes, Null controllability for a parabolic-elliptic coupled system,, Bull. Braz. Math. Soc. (N.S.), 44 (2013), 285.  doi: 10.1007/s00574-013-0014-x.  Google Scholar

[5]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series 34, (1996).   Google Scholar

[6]

O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit,, J. Funct. Analysis, 258 (2010), 852.  doi: 10.1016/j.jfa.2009.06.035.  Google Scholar

[7]

M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force,, Asymptot. Anal., 46 (2006), 123.   Google Scholar

[8]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force,, SIAM J. Control Optim., 46 (2007), 379.  doi: 10.1137/060653135.  Google Scholar

[9]

S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation,, Comm. Partial Differential Equations, 32 (2007), 1813.  doi: 10.1080/03605300701743756.  Google Scholar

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I,, Jahresber. Dtsch. Math.-Ver, 105 (2003), 103.   Google Scholar

[11]

A. Lopes, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations,, J. Math. Pures Appl., 79 (2000), 741.  doi: 10.1016/S0021-7824(99)00144-0.  Google Scholar

[12]

J.-L. Lions, Some Methods in Mathematical Analysis of System and their Control,, Science Press, (1981).   Google Scholar

[13]

J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications,, volumes 1, (1968).   Google Scholar

[1]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[2]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[3]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[4]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[5]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[6]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019031

[7]

Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699

[8]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[9]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[10]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[11]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[12]

Nicolas Hegoburu, Marius Tucsnak. Null controllability of the Lotka-McKendrick system with spatial diffusion. Mathematical Control & Related Fields, 2018, 8 (3&4) : 707-720. doi: 10.3934/mcrf.2018030

[13]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[14]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[15]

Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019037

[16]

Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159

[17]

Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. Persistent regional null contrillability for a class of degenerate parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 607-635. doi: 10.3934/cpaa.2004.3.607

[18]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[19]

Yun-Gang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 243-250. doi: 10.3934/dcds.1997.3.243

[20]

Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]