December  2014, 4(4): 481-500. doi: 10.3934/mcrf.2014.4.481

Asymptotic stability of Webster-Lokshin equation

1. 

Université de Toulouse; ISAE, DMIA, 10, avenue E. Belin, B.P. 54032, F-31055 Toulouse cedex 4, France

2. 

GIPSA-lab, CNRS, 11 rue des Mathématiques, Grenoble Campus, 38402 Grenoble Cedex, France

Received  May 2013 Revised  February 2014 Published  September 2014

The Webster-Lokshin equation is a partial differential equation considered in this paper. It models the sound velocity in an acoustic domain. The dynamics contains linear fractional derivatives which can admit an infinite dimensional representation of diffusive type. The boundary conditions are described by impedance condition, which can be represented by two finite dimensional systems. Under the physical assumptions, there is a natural energy inequality. However, due to a lack of precompactness of the solutions, the LaSalle invariance principle can not be applied. The asymptotic stability of the system is proved by studying the resolvent equation, and by using the Arendt-Batty stability condition.
Citation: Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control & Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481
References:
[1]

B. d'Andréa-Novel, F. Boustany, F. Conrad and B. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane,, Mathematics of Control, 7 (1994), 1.  doi: 10.1007/BF01211483.  Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Am. Math. Soc., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[3]

D. Z. Arov and O. J. Staffans, The infinite-dimensional continuous time Kalman-Yakubovich-Popov inequality,, The extended field of operator theory, 171 (2007), 37.  doi: 10.1007/978-3-7643-7980-3_3.  Google Scholar

[4]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces,, J. Evolution Equation, 8 (2008), 765.  doi: 10.1007/s00028-008-0424-1.  Google Scholar

[5]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Mathematische Annalen, 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[6]

S. Boyd, L. El Ghaoui, E. Féron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory,, volume 15 of {Studies in Applied Mathematics}. SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[7]

M. Bruneau, Ph. Herzog, J. Kergomard and J.-D. Polack, General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries,, Wave Motion, 11 (1989), 441.  doi: 10.1016/0165-2125(89)90018-8.  Google Scholar

[8]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[9]

F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback,, Ann. Inst. Henri Poincaré, 11 (1994), 485.   Google Scholar

[10]

J.-M. Coron, Control and Nonlinearity,, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, (2007).   Google Scholar

[11]

R. F. Curtain, Old and new perspectives on the positive-real lemma in systems and control theory,, Z. Angew. Math. Mech., 79 (1999), 579.  doi: 10.1002/(SICI)1521-4001(199909)79:9<579::AID-ZAMM579>3.0.CO;2-8.  Google Scholar

[12]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Texts in Applied Mathematics, (1995).  doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[13]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, vol. 5, (1984).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[14]

H. Haddar and D. Matignon, Theoretical and Numerical Analysis of the Webster-Lokshin Model,, Research. Report, (2008).   Google Scholar

[15]

H. Haddar, J.-R. Li and D. Matignon, Efficient solution of a wave equation with fractional order dissipative terms,, Journal of Computational and Applied Mathematics, 234 (2010), 2003.  doi: 10.1016/j.cam.2009.08.051.  Google Scholar

[16]

Th. Hélie, Unidimensional models of the acoustic propagation in axisymmetric waveguides,, J. Acoust. Soc. Amer., 114 (2003), 2633.   Google Scholar

[17]

A. A. Lokshin, Wave equation with singular retarded time,, Dokl. Akad. Nauk SSSR, 240 (1978), 43.   Google Scholar

[18]

A. A. Lokshin and V. E. Rok, Fundamental solutions of the wave equation with retarded time,, Dokl. Akad. Nauk SSSR, 239 (1978), 1305.   Google Scholar

[19]

Z. H. Luo, B. Z. Guo and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications,, Communications and Control Engineering. Springer Verlag, (1999).  doi: 10.1007/978-1-4471-0419-3.  Google Scholar

[20]

Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces,, Stud. Math., 88 (1988), 37.   Google Scholar

[21]

D. Matignon, Stability properties for generalized fractional differential systems,, ESAIM: Proc., 5 (1998), 145.  doi: 10.1051/proc:1998004.  Google Scholar

[22]

D. Matignon, Asymptotic stability of the Webster-Lokshin model,, in Mathematical Theory of Networks and Systems, (2006).   Google Scholar

[23]

D. Matignon, An introduction to fractional calculus,, in Scaling, 7 (2009), 237.  doi: 10.1002/9780470611562.ch7.  Google Scholar

[24]

D. Matignon and B. d'Andréa-Novel, Spectral and time-domain consequences of an integro-differential perturbation of the wave PDE,, in Third int. conf. on math. and num. aspects of wave propagation phenomena, (1995), 769.   Google Scholar

[25]

D. Matignon, J. Audounet and G. Montseny, Energy decay for wave equations with damping of fractional order,, in Fourth int. conf. on math. and num. aspects of wave propagation phenomena, (1998), 638.   Google Scholar

[26]

D. Matignon and Ch. Prieur, Asymptotic stability of linear conservative systems when coupled with diffusive systems,, ESAIM: Control, 11 (2005), 487.  doi: 10.1051/cocv:2005016.  Google Scholar

[27]

G. Montseny, Diffusive representation of pseudo-differential time-operators,, ESAIM: Proc., 5 (1998), 159.  doi: 10.1051/proc:1998005.  Google Scholar

[28]

J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations,, Advances in Mathematics, 22 (1976), 278.  doi: 10.1016/0001-8708(76)90096-7.  Google Scholar

[29]

J.-D. Polack, Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process,, J. Acoustique, 4 (1991), 47.   Google Scholar

[30]

A. Rantzer, On the Kalman-Yakubovich-Popov lemma,, Systems & Control Letters, 28 (1996), 7.  doi: 10.1016/0167-6911(95)00063-1.  Google Scholar

[31]

O. J. Staffans, Well-posedness and stabilizability of a viscoelastic equation in energy space,, Trans. Amer. Math. Soc., 345 (1994), 527.  doi: 10.1090/S0002-9947-1994-1264153-X.  Google Scholar

[32]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser, (2009).  doi: 10.1007/978-3-7643-8994-9.  Google Scholar

show all references

References:
[1]

B. d'Andréa-Novel, F. Boustany, F. Conrad and B. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane,, Mathematics of Control, 7 (1994), 1.  doi: 10.1007/BF01211483.  Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Am. Math. Soc., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[3]

D. Z. Arov and O. J. Staffans, The infinite-dimensional continuous time Kalman-Yakubovich-Popov inequality,, The extended field of operator theory, 171 (2007), 37.  doi: 10.1007/978-3-7643-7980-3_3.  Google Scholar

[4]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces,, J. Evolution Equation, 8 (2008), 765.  doi: 10.1007/s00028-008-0424-1.  Google Scholar

[5]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Mathematische Annalen, 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[6]

S. Boyd, L. El Ghaoui, E. Féron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory,, volume 15 of {Studies in Applied Mathematics}. SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[7]

M. Bruneau, Ph. Herzog, J. Kergomard and J.-D. Polack, General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries,, Wave Motion, 11 (1989), 441.  doi: 10.1016/0165-2125(89)90018-8.  Google Scholar

[8]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[9]

F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback,, Ann. Inst. Henri Poincaré, 11 (1994), 485.   Google Scholar

[10]

J.-M. Coron, Control and Nonlinearity,, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, (2007).   Google Scholar

[11]

R. F. Curtain, Old and new perspectives on the positive-real lemma in systems and control theory,, Z. Angew. Math. Mech., 79 (1999), 579.  doi: 10.1002/(SICI)1521-4001(199909)79:9<579::AID-ZAMM579>3.0.CO;2-8.  Google Scholar

[12]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Texts in Applied Mathematics, (1995).  doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[13]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, vol. 5, (1984).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[14]

H. Haddar and D. Matignon, Theoretical and Numerical Analysis of the Webster-Lokshin Model,, Research. Report, (2008).   Google Scholar

[15]

H. Haddar, J.-R. Li and D. Matignon, Efficient solution of a wave equation with fractional order dissipative terms,, Journal of Computational and Applied Mathematics, 234 (2010), 2003.  doi: 10.1016/j.cam.2009.08.051.  Google Scholar

[16]

Th. Hélie, Unidimensional models of the acoustic propagation in axisymmetric waveguides,, J. Acoust. Soc. Amer., 114 (2003), 2633.   Google Scholar

[17]

A. A. Lokshin, Wave equation with singular retarded time,, Dokl. Akad. Nauk SSSR, 240 (1978), 43.   Google Scholar

[18]

A. A. Lokshin and V. E. Rok, Fundamental solutions of the wave equation with retarded time,, Dokl. Akad. Nauk SSSR, 239 (1978), 1305.   Google Scholar

[19]

Z. H. Luo, B. Z. Guo and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications,, Communications and Control Engineering. Springer Verlag, (1999).  doi: 10.1007/978-1-4471-0419-3.  Google Scholar

[20]

Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces,, Stud. Math., 88 (1988), 37.   Google Scholar

[21]

D. Matignon, Stability properties for generalized fractional differential systems,, ESAIM: Proc., 5 (1998), 145.  doi: 10.1051/proc:1998004.  Google Scholar

[22]

D. Matignon, Asymptotic stability of the Webster-Lokshin model,, in Mathematical Theory of Networks and Systems, (2006).   Google Scholar

[23]

D. Matignon, An introduction to fractional calculus,, in Scaling, 7 (2009), 237.  doi: 10.1002/9780470611562.ch7.  Google Scholar

[24]

D. Matignon and B. d'Andréa-Novel, Spectral and time-domain consequences of an integro-differential perturbation of the wave PDE,, in Third int. conf. on math. and num. aspects of wave propagation phenomena, (1995), 769.   Google Scholar

[25]

D. Matignon, J. Audounet and G. Montseny, Energy decay for wave equations with damping of fractional order,, in Fourth int. conf. on math. and num. aspects of wave propagation phenomena, (1998), 638.   Google Scholar

[26]

D. Matignon and Ch. Prieur, Asymptotic stability of linear conservative systems when coupled with diffusive systems,, ESAIM: Control, 11 (2005), 487.  doi: 10.1051/cocv:2005016.  Google Scholar

[27]

G. Montseny, Diffusive representation of pseudo-differential time-operators,, ESAIM: Proc., 5 (1998), 159.  doi: 10.1051/proc:1998005.  Google Scholar

[28]

J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations,, Advances in Mathematics, 22 (1976), 278.  doi: 10.1016/0001-8708(76)90096-7.  Google Scholar

[29]

J.-D. Polack, Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process,, J. Acoustique, 4 (1991), 47.   Google Scholar

[30]

A. Rantzer, On the Kalman-Yakubovich-Popov lemma,, Systems & Control Letters, 28 (1996), 7.  doi: 10.1016/0167-6911(95)00063-1.  Google Scholar

[31]

O. J. Staffans, Well-posedness and stabilizability of a viscoelastic equation in energy space,, Trans. Amer. Math. Soc., 345 (1994), 527.  doi: 10.1090/S0002-9947-1994-1264153-X.  Google Scholar

[32]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser, (2009).  doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[6]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[9]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[13]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[14]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[15]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[17]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[18]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[19]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[20]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]