-
Previous Article
Observability and controllability analysis of blood flow network
- MCRF Home
- This Issue
-
Next Article
Asymptotic stability of Webster-Lokshin equation
Multivariable boundary PI control and regulation of a fluid flow system
1. | Université de Lyon, LAGEP, Bât. CPE, Université Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France |
2. | Université de Lorraine and Inria Nancy-Grand Est, Bâtiment A, Ile du Saulcy, F-57045 Metz, France |
References:
[1] |
G. Bastin and J. M. Coron, On boundary feedback stabilization of non-uniform linear $2 \times 2$ hyperbolic systems over a bounded interval,, Systems & Control Letters, 60 (2011), 900.
doi: 10.1016/j.sysconle.2011.07.008. |
[2] |
H. Bounit, H. Hammouri and J. Sau, Regulation of an irrigation channel through the semigroup approach,, Proceedings of the workshop on Regulation and Irrigation Canals, (1997), 261. Google Scholar |
[3] |
J. M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Transactions on Automatic Control, 52 (2007), 2.
doi: 10.1109/TAC.2006.887903. |
[4] |
E. J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems,, IEEE Transactions Automatic Control, 21 (1976), 25.
|
[5] |
V. Dos Santos and C. Prieur, Boundary control of open channels with numerical and experimental validations,, IEEE Transactions on Control Systems Technolgy, 16 (2008), 1252. Google Scholar |
[6] |
D. Georegs, Infinite-dimensional nonlinear predictive control design for open hydraulic systems,, Networks and Heterogeneous Media - American Institute of Mathematical Sciences, 4 (2009), 267.
doi: 10.3934/nhm.2009.4.267. |
[7] |
J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasi-linear wave equation,, Journal of Differential Equations, 52 (1984), 66.
doi: 10.1016/0022-0396(84)90135-9. |
[8] |
F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. of Differential Equations, 1 (1985), 43.
|
[9] |
T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1976).
|
[10] |
I. Lasiecka and R. Triggiani, Finite rank, relative bounded perturbation of semigroups - Part I : Well-posedness and boundary feedback hyperbolic dynamics,, Annali Scuola Normale Superior-Pisa, 12 (1985), 641.
|
[11] |
X. Litrico and V. Fromion, Boundary control of hyperbolic conservation laws using a frequency domain approach,, Automatica, 45 (2009), 647.
doi: 10.1016/j.automatica.2008.09.022. |
[12] |
H. Logemann and S. Townley, Low gain control of uncertain regular linear systems,, SIAM J. Control Optim., 35 (1997), 78.
doi: 10.1137/S0363012994275920. |
[13] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[14] |
S. A. Pohjolainen, Robust multivariable PI-controllers for infinite dimensional systems,, IEEE Transaction Automatic Control, 27 (1982), 17.
doi: 10.1109/TAC.1982.1102887. |
[15] |
S. Pohjolainen, Robust controller for systems with exponentially stable strongly continuous semigroups,, Journal of Mathematical Analysis and Applications, 111 (1985), 622.
doi: 10.1016/0022-247X(85)90239-2. |
[16] |
J. Prüss, On the spectrum of $C_0$- semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.
doi: 10.2307/1999112. |
[17] |
J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domain,, Indiana University Mathematics Journal, 24 (1974), 79.
doi: 10.1512/iumj.1975.24.24004. |
[18] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations : Recent progress and open questions,, Siam Review, 20 (1978), 639.
doi: 10.1137/1020095. |
[19] |
D. L. Russell and G. Weiss, A general necessary condition for exact observability,, SIAM J. Control and Optimization, 32 (1994), 1.
doi: 10.1137/S036301299119795X. |
[20] |
D. Salamon, Realization theory in Hilbert space,, Math. Systems Theory, 21 (1989), 147.
doi: 10.1007/BF02088011. |
[21] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser, (2009).
doi: 10.1007/978-3-7643-8994-9. |
[22] |
G. Weiss, Regular linear systems with feedback,, Math. Control, 7 (1994), 23.
doi: 10.1007/BF01211484. |
[23] |
C. Z. Xu and D. X. Feng, Symmetric hyperbolic systems and applications to exponential stability of heat exchangers and irrigation canals,, Proceedings of the Mathematical Theory of Networks and Systems, (2000). Google Scholar |
[24] |
C. Z. Xu and H. Jerbi, A robust PI-controller for infinite dimensional systems,, Int. J. Control, 61 (1995), 33.
doi: 10.1080/00207179508921891. |
[25] |
C. Z. Xu and G. Sallet, Proportional and integral regulation of irrigation canal systems governed by the Saint Venant equation,, Proceedings of the 14th IFAC World Congress, (1999). Google Scholar |
[26] |
C. Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems,, ESAIM: Control, 7 (2002), 421.
doi: 10.1051/cocv:2002062. |
show all references
References:
[1] |
G. Bastin and J. M. Coron, On boundary feedback stabilization of non-uniform linear $2 \times 2$ hyperbolic systems over a bounded interval,, Systems & Control Letters, 60 (2011), 900.
doi: 10.1016/j.sysconle.2011.07.008. |
[2] |
H. Bounit, H. Hammouri and J. Sau, Regulation of an irrigation channel through the semigroup approach,, Proceedings of the workshop on Regulation and Irrigation Canals, (1997), 261. Google Scholar |
[3] |
J. M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Transactions on Automatic Control, 52 (2007), 2.
doi: 10.1109/TAC.2006.887903. |
[4] |
E. J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems,, IEEE Transactions Automatic Control, 21 (1976), 25.
|
[5] |
V. Dos Santos and C. Prieur, Boundary control of open channels with numerical and experimental validations,, IEEE Transactions on Control Systems Technolgy, 16 (2008), 1252. Google Scholar |
[6] |
D. Georegs, Infinite-dimensional nonlinear predictive control design for open hydraulic systems,, Networks and Heterogeneous Media - American Institute of Mathematical Sciences, 4 (2009), 267.
doi: 10.3934/nhm.2009.4.267. |
[7] |
J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasi-linear wave equation,, Journal of Differential Equations, 52 (1984), 66.
doi: 10.1016/0022-0396(84)90135-9. |
[8] |
F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. of Differential Equations, 1 (1985), 43.
|
[9] |
T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1976).
|
[10] |
I. Lasiecka and R. Triggiani, Finite rank, relative bounded perturbation of semigroups - Part I : Well-posedness and boundary feedback hyperbolic dynamics,, Annali Scuola Normale Superior-Pisa, 12 (1985), 641.
|
[11] |
X. Litrico and V. Fromion, Boundary control of hyperbolic conservation laws using a frequency domain approach,, Automatica, 45 (2009), 647.
doi: 10.1016/j.automatica.2008.09.022. |
[12] |
H. Logemann and S. Townley, Low gain control of uncertain regular linear systems,, SIAM J. Control Optim., 35 (1997), 78.
doi: 10.1137/S0363012994275920. |
[13] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[14] |
S. A. Pohjolainen, Robust multivariable PI-controllers for infinite dimensional systems,, IEEE Transaction Automatic Control, 27 (1982), 17.
doi: 10.1109/TAC.1982.1102887. |
[15] |
S. Pohjolainen, Robust controller for systems with exponentially stable strongly continuous semigroups,, Journal of Mathematical Analysis and Applications, 111 (1985), 622.
doi: 10.1016/0022-247X(85)90239-2. |
[16] |
J. Prüss, On the spectrum of $C_0$- semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.
doi: 10.2307/1999112. |
[17] |
J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domain,, Indiana University Mathematics Journal, 24 (1974), 79.
doi: 10.1512/iumj.1975.24.24004. |
[18] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations : Recent progress and open questions,, Siam Review, 20 (1978), 639.
doi: 10.1137/1020095. |
[19] |
D. L. Russell and G. Weiss, A general necessary condition for exact observability,, SIAM J. Control and Optimization, 32 (1994), 1.
doi: 10.1137/S036301299119795X. |
[20] |
D. Salamon, Realization theory in Hilbert space,, Math. Systems Theory, 21 (1989), 147.
doi: 10.1007/BF02088011. |
[21] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser, (2009).
doi: 10.1007/978-3-7643-8994-9. |
[22] |
G. Weiss, Regular linear systems with feedback,, Math. Control, 7 (1994), 23.
doi: 10.1007/BF01211484. |
[23] |
C. Z. Xu and D. X. Feng, Symmetric hyperbolic systems and applications to exponential stability of heat exchangers and irrigation canals,, Proceedings of the Mathematical Theory of Networks and Systems, (2000). Google Scholar |
[24] |
C. Z. Xu and H. Jerbi, A robust PI-controller for infinite dimensional systems,, Int. J. Control, 61 (1995), 33.
doi: 10.1080/00207179508921891. |
[25] |
C. Z. Xu and G. Sallet, Proportional and integral regulation of irrigation canal systems governed by the Saint Venant equation,, Proceedings of the 14th IFAC World Congress, (1999). Google Scholar |
[26] |
C. Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems,, ESAIM: Control, 7 (2002), 421.
doi: 10.1051/cocv:2002062. |
[1] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[2] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[3] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[4] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[5] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[6] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[7] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[8] |
Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020357 |
[9] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[10] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[11] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[12] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[13] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[14] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[15] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[16] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[17] |
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008 |
[18] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[19] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[20] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]