December  2014, 4(4): 501-520. doi: 10.3934/mcrf.2014.4.501

Multivariable boundary PI control and regulation of a fluid flow system

1. 

Université de Lyon, LAGEP, Bât. CPE, Université Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

2. 

Université de Lorraine and Inria Nancy-Grand Est, Bâtiment A, Ile du Saulcy, F-57045 Metz, France

Received  July 2013 Revised  March 2014 Published  September 2014

The paper is concerned with the control of a fluid flow system governed by nonlinear hyperbolic partial differential equations. The control and the output observation are located on the boundary. We study local stability of spatially heterogeneous equilibrium states by using Lyapunov approach. We prove that the linearized system is exponentially stable around each subcritical equilibrium state. A systematic design of proportional and integral controllers is proposed for the system based on the linearized model. Robust stabilization of the closed-loop system is proved by using a spectrum method.
Citation: Cheng-Zhong Xu, Gauthier Sallet. Multivariable boundary PI control and regulation of a fluid flow system. Mathematical Control & Related Fields, 2014, 4 (4) : 501-520. doi: 10.3934/mcrf.2014.4.501
References:
[1]

G. Bastin and J. M. Coron, On boundary feedback stabilization of non-uniform linear $2 \times 2$ hyperbolic systems over a bounded interval,, Systems & Control Letters, 60 (2011), 900.  doi: 10.1016/j.sysconle.2011.07.008.  Google Scholar

[2]

H. Bounit, H. Hammouri and J. Sau, Regulation of an irrigation channel through the semigroup approach,, Proceedings of the workshop on Regulation and Irrigation Canals, (1997), 261.   Google Scholar

[3]

J. M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Transactions on Automatic Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[4]

E. J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems,, IEEE Transactions Automatic Control, 21 (1976), 25.   Google Scholar

[5]

V. Dos Santos and C. Prieur, Boundary control of open channels with numerical and experimental validations,, IEEE Transactions on Control Systems Technolgy, 16 (2008), 1252.   Google Scholar

[6]

D. Georegs, Infinite-dimensional nonlinear predictive control design for open hydraulic systems,, Networks and Heterogeneous Media - American Institute of Mathematical Sciences, 4 (2009), 267.  doi: 10.3934/nhm.2009.4.267.  Google Scholar

[7]

J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasi-linear wave equation,, Journal of Differential Equations, 52 (1984), 66.  doi: 10.1016/0022-0396(84)90135-9.  Google Scholar

[8]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. of Differential Equations, 1 (1985), 43.   Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1976).   Google Scholar

[10]

I. Lasiecka and R. Triggiani, Finite rank, relative bounded perturbation of semigroups - Part I : Well-posedness and boundary feedback hyperbolic dynamics,, Annali Scuola Normale Superior-Pisa, 12 (1985), 641.   Google Scholar

[11]

X. Litrico and V. Fromion, Boundary control of hyperbolic conservation laws using a frequency domain approach,, Automatica, 45 (2009), 647.  doi: 10.1016/j.automatica.2008.09.022.  Google Scholar

[12]

H. Logemann and S. Townley, Low gain control of uncertain regular linear systems,, SIAM J. Control Optim., 35 (1997), 78.  doi: 10.1137/S0363012994275920.  Google Scholar

[13]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[14]

S. A. Pohjolainen, Robust multivariable PI-controllers for infinite dimensional systems,, IEEE Transaction Automatic Control, 27 (1982), 17.  doi: 10.1109/TAC.1982.1102887.  Google Scholar

[15]

S. Pohjolainen, Robust controller for systems with exponentially stable strongly continuous semigroups,, Journal of Mathematical Analysis and Applications, 111 (1985), 622.  doi: 10.1016/0022-247X(85)90239-2.  Google Scholar

[16]

J. Prüss, On the spectrum of $C_0$- semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[17]

J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domain,, Indiana University Mathematics Journal, 24 (1974), 79.  doi: 10.1512/iumj.1975.24.24004.  Google Scholar

[18]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations : Recent progress and open questions,, Siam Review, 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[19]

D. L. Russell and G. Weiss, A general necessary condition for exact observability,, SIAM J. Control and Optimization, 32 (1994), 1.  doi: 10.1137/S036301299119795X.  Google Scholar

[20]

D. Salamon, Realization theory in Hilbert space,, Math. Systems Theory, 21 (1989), 147.  doi: 10.1007/BF02088011.  Google Scholar

[21]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser, (2009).  doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[22]

G. Weiss, Regular linear systems with feedback,, Math. Control, 7 (1994), 23.  doi: 10.1007/BF01211484.  Google Scholar

[23]

C. Z. Xu and D. X. Feng, Symmetric hyperbolic systems and applications to exponential stability of heat exchangers and irrigation canals,, Proceedings of the Mathematical Theory of Networks and Systems, (2000).   Google Scholar

[24]

C. Z. Xu and H. Jerbi, A robust PI-controller for infinite dimensional systems,, Int. J. Control, 61 (1995), 33.  doi: 10.1080/00207179508921891.  Google Scholar

[25]

C. Z. Xu and G. Sallet, Proportional and integral regulation of irrigation canal systems governed by the Saint Venant equation,, Proceedings of the 14th IFAC World Congress, (1999).   Google Scholar

[26]

C. Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems,, ESAIM: Control, 7 (2002), 421.  doi: 10.1051/cocv:2002062.  Google Scholar

show all references

References:
[1]

G. Bastin and J. M. Coron, On boundary feedback stabilization of non-uniform linear $2 \times 2$ hyperbolic systems over a bounded interval,, Systems & Control Letters, 60 (2011), 900.  doi: 10.1016/j.sysconle.2011.07.008.  Google Scholar

[2]

H. Bounit, H. Hammouri and J. Sau, Regulation of an irrigation channel through the semigroup approach,, Proceedings of the workshop on Regulation and Irrigation Canals, (1997), 261.   Google Scholar

[3]

J. M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Transactions on Automatic Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[4]

E. J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems,, IEEE Transactions Automatic Control, 21 (1976), 25.   Google Scholar

[5]

V. Dos Santos and C. Prieur, Boundary control of open channels with numerical and experimental validations,, IEEE Transactions on Control Systems Technolgy, 16 (2008), 1252.   Google Scholar

[6]

D. Georegs, Infinite-dimensional nonlinear predictive control design for open hydraulic systems,, Networks and Heterogeneous Media - American Institute of Mathematical Sciences, 4 (2009), 267.  doi: 10.3934/nhm.2009.4.267.  Google Scholar

[7]

J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasi-linear wave equation,, Journal of Differential Equations, 52 (1984), 66.  doi: 10.1016/0022-0396(84)90135-9.  Google Scholar

[8]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. of Differential Equations, 1 (1985), 43.   Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1976).   Google Scholar

[10]

I. Lasiecka and R. Triggiani, Finite rank, relative bounded perturbation of semigroups - Part I : Well-posedness and boundary feedback hyperbolic dynamics,, Annali Scuola Normale Superior-Pisa, 12 (1985), 641.   Google Scholar

[11]

X. Litrico and V. Fromion, Boundary control of hyperbolic conservation laws using a frequency domain approach,, Automatica, 45 (2009), 647.  doi: 10.1016/j.automatica.2008.09.022.  Google Scholar

[12]

H. Logemann and S. Townley, Low gain control of uncertain regular linear systems,, SIAM J. Control Optim., 35 (1997), 78.  doi: 10.1137/S0363012994275920.  Google Scholar

[13]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[14]

S. A. Pohjolainen, Robust multivariable PI-controllers for infinite dimensional systems,, IEEE Transaction Automatic Control, 27 (1982), 17.  doi: 10.1109/TAC.1982.1102887.  Google Scholar

[15]

S. Pohjolainen, Robust controller for systems with exponentially stable strongly continuous semigroups,, Journal of Mathematical Analysis and Applications, 111 (1985), 622.  doi: 10.1016/0022-247X(85)90239-2.  Google Scholar

[16]

J. Prüss, On the spectrum of $C_0$- semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[17]

J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domain,, Indiana University Mathematics Journal, 24 (1974), 79.  doi: 10.1512/iumj.1975.24.24004.  Google Scholar

[18]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations : Recent progress and open questions,, Siam Review, 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[19]

D. L. Russell and G. Weiss, A general necessary condition for exact observability,, SIAM J. Control and Optimization, 32 (1994), 1.  doi: 10.1137/S036301299119795X.  Google Scholar

[20]

D. Salamon, Realization theory in Hilbert space,, Math. Systems Theory, 21 (1989), 147.  doi: 10.1007/BF02088011.  Google Scholar

[21]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser, (2009).  doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[22]

G. Weiss, Regular linear systems with feedback,, Math. Control, 7 (1994), 23.  doi: 10.1007/BF01211484.  Google Scholar

[23]

C. Z. Xu and D. X. Feng, Symmetric hyperbolic systems and applications to exponential stability of heat exchangers and irrigation canals,, Proceedings of the Mathematical Theory of Networks and Systems, (2000).   Google Scholar

[24]

C. Z. Xu and H. Jerbi, A robust PI-controller for infinite dimensional systems,, Int. J. Control, 61 (1995), 33.  doi: 10.1080/00207179508921891.  Google Scholar

[25]

C. Z. Xu and G. Sallet, Proportional and integral regulation of irrigation canal systems governed by the Saint Venant equation,, Proceedings of the 14th IFAC World Congress, (1999).   Google Scholar

[26]

C. Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems,, ESAIM: Control, 7 (2002), 421.  doi: 10.1051/cocv:2002062.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[7]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[8]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[9]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[10]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[11]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[12]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[17]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008

[18]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[19]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[20]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]