- Previous Article
- MCRF Home
- This Issue
-
Next Article
Multivariable boundary PI control and regulation of a fluid flow system
Observability and controllability analysis of blood flow network
1. | Department of Mathematics, Tianjin University, Tianjin, 300072, China, China |
References:
[1] |
L. Formaggia, F. Nobile, A. Quarteroni and A. Venezini, Multiscale modelling of the circulatory system: A preliminary analysis, Computing and visualization in science., 2 (1999), 75-83.
doi: 10.1007/s007910050030. |
[2] |
A. Quarteroni and A. Venezini, Analysis of a geometrical multiscale model based on the coupling of ODE's and PDE's for blood flow simulation, Multiscale Modeling & Simulation., 1 (2003), 173-195.
doi: 10.1137/S1540345902408482. |
[3] |
L. Formaggia, J. F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comp. Meth. Appl. Mech. Engng., 191 (2001), 561-582.
doi: 10.1016/S0045-7825(01)00302-4. |
[4] |
S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math. Methods Appl. Sci., 26 (2003), 1161-1186.
doi: 10.1002/mma.407. |
[5] |
T. Li and K. Zhao, Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model, Netw. Heterog. Media., 6 (2011), 625-646.
doi: 10.3934/nhm.2011.6.625. |
[6] |
S. J. Sherwin, V. Franke, J. Peiró and K. Parker, One-dimensional modelling of a vascular network in space-time variables, J. Engineering Mathematics., 47 (2003), 217-250.
doi: 10.1023/B:ENGI.0000007979.32871.e2. |
[7] |
A. Harloff, F. Albrecht, J. Spreer, A. F. Stalder, J. Bock, A. Frydrychowicz, J. Schöllhorn, A. Hetzel, M. Schumacher, J. Hennig and M. Markl, 3D blood blow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T, Magnetic Resonance in Medicine., 61 (2009), 65-74. |
[8] |
F. N. van de Vosse and N. Stergiopulos, Pulse Wave Propagation in the Arterial Tree, Annu. Rev. Fluid Mech., 43 (2011), 467-499.
doi: 10.1146/annurev-fluid-122109-160730. |
[9] |
J. O. Barber, I. P. Alberding, J. M. Restrepo and T. W. Secomb, Simulated two-dimensional red blood cell motion, deformation and partitioning in microvessel bifurcations, Ann Biomed Eng., 36 (2008), 1690-1698.
doi: 10.1007/s10439-008-9546-4. |
[10] |
L. Formaggia, D. Lamponi, M. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart, Compute Methods Biomech Biomed Engin., 9 (2006), 273-288.
doi: 10.1080/10255840600857767. |
[11] |
J. J. Wang and K. Parker, Wave propagation in a model for arterial circulation, J. Biomech., 37 (2004), 457-470.
doi: 10.1016/j.jbiomech.2003.09.007. |
[12] |
S. Z. Zhao, X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff and Q. Long, Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation, J. Biomech., 33 (2000), 975-984.
doi: 10.1016/S0021-9290(00)00043-9. |
[13] |
M. A. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODE's and hyperbolic PDE's, SIAM J. Multiscale Mod. Sim., 4 (2005), 215-236.
doi: 10.1137/030602010. |
[14] |
V. Milišić and A. Quarteroni, Analiysis of lumped parameter models for blood flow simulations and their relation with 1D models, ESAIM: Mathematical Modelling and Numerical Analysis., 38 (2004), 613-632.
doi: 10.1051/m2an:2004036. |
[15] |
A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: Problems, models and methods, Comput. Visual Sci., 2 (2000), 163-197.
doi: 10.1007/s007910050039. |
[16] |
I. C. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Non-Selfadjoint Operators, Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Berlin: Springer-Verlag, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[18] |
R. Curtain and G. Weiss, Exponential stabilization of well-posed systems by collocated feedback, SIAM J. Control & Optim., 45 (2006), 273-297.
doi: 10.1137/040610489. |
[19] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Adv anced Texts: Basler Lehrbücher., Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[20] |
R. Mennicken and M. Möller, Non-self-adjoint Boundary Eigenvalue Problems, North-Holland Mathematics Studies, 192. North-Holland Publishing Co., Amsterdam, 2003. |
[21] |
S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter System, Cambridge University Press, Cambridge, 1995. |
[22] |
G. Q. Xu and Y. X. Zhang, Vector-valued hyperbolic system and applications to complex networks of strings, Joint 48th IEEE CDC and 28th CCC, Shanghai, (2009), 6448-6453.
doi: 10.1109/CDC.2009.5400250. |
[23] |
R. M. Young, An Introduction to Nonharmonic Fourier Series, Pure and Applied Mathematics, 93. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. |
[24] |
G. Q. Xu, C. Liu and S. P. Yung, Necessary conditions for the exact observability of systems on Hilbert spaces, Systems & Control Letters, 57 (2008), 222-227.
doi: 10.1016/j.sysconle.2007.08.006. |
[25] |
G. Q. Xu and Y. F. Shang, Characteristic of left invertible semigroups and admissibility of observation operators, Systems & Control Letters, 58 (2009), 561-566.
doi: 10.1016/j.sysconle.2009.03.006. |
[26] |
G. Q. Xu and S. P. Yung, The expansion of semigroup and criterion of Riesz Basis, J. Diff. Equat., 210 (2005), 1-24.
doi: 10.1016/j.jde.2004.09.015. |
[27] |
G. Q. Xu, Z. J. Han and S. P. Yung, Riesz basis property of serially connected Timoshenko beams, International Journal of Control, 80 (2007), 470-485.
doi: 10.1080/00207170601100904. |
[28] |
G. Q. Xu and B. Z. Guo, Riesz basis property of Evolution equations in Hilbert space and application to a coupled string equation, SIAM J. Control & Optim., 42 (2003), 966-984.
doi: 10.1137/S0363012901400081. |
[29] |
B. Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks, SIAM J.Control & Optim., 43 (2004), 1234-1252.
doi: 10.1137/S0363012902420352. |
show all references
References:
[1] |
L. Formaggia, F. Nobile, A. Quarteroni and A. Venezini, Multiscale modelling of the circulatory system: A preliminary analysis, Computing and visualization in science., 2 (1999), 75-83.
doi: 10.1007/s007910050030. |
[2] |
A. Quarteroni and A. Venezini, Analysis of a geometrical multiscale model based on the coupling of ODE's and PDE's for blood flow simulation, Multiscale Modeling & Simulation., 1 (2003), 173-195.
doi: 10.1137/S1540345902408482. |
[3] |
L. Formaggia, J. F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comp. Meth. Appl. Mech. Engng., 191 (2001), 561-582.
doi: 10.1016/S0045-7825(01)00302-4. |
[4] |
S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math. Methods Appl. Sci., 26 (2003), 1161-1186.
doi: 10.1002/mma.407. |
[5] |
T. Li and K. Zhao, Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model, Netw. Heterog. Media., 6 (2011), 625-646.
doi: 10.3934/nhm.2011.6.625. |
[6] |
S. J. Sherwin, V. Franke, J. Peiró and K. Parker, One-dimensional modelling of a vascular network in space-time variables, J. Engineering Mathematics., 47 (2003), 217-250.
doi: 10.1023/B:ENGI.0000007979.32871.e2. |
[7] |
A. Harloff, F. Albrecht, J. Spreer, A. F. Stalder, J. Bock, A. Frydrychowicz, J. Schöllhorn, A. Hetzel, M. Schumacher, J. Hennig and M. Markl, 3D blood blow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T, Magnetic Resonance in Medicine., 61 (2009), 65-74. |
[8] |
F. N. van de Vosse and N. Stergiopulos, Pulse Wave Propagation in the Arterial Tree, Annu. Rev. Fluid Mech., 43 (2011), 467-499.
doi: 10.1146/annurev-fluid-122109-160730. |
[9] |
J. O. Barber, I. P. Alberding, J. M. Restrepo and T. W. Secomb, Simulated two-dimensional red blood cell motion, deformation and partitioning in microvessel bifurcations, Ann Biomed Eng., 36 (2008), 1690-1698.
doi: 10.1007/s10439-008-9546-4. |
[10] |
L. Formaggia, D. Lamponi, M. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart, Compute Methods Biomech Biomed Engin., 9 (2006), 273-288.
doi: 10.1080/10255840600857767. |
[11] |
J. J. Wang and K. Parker, Wave propagation in a model for arterial circulation, J. Biomech., 37 (2004), 457-470.
doi: 10.1016/j.jbiomech.2003.09.007. |
[12] |
S. Z. Zhao, X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff and Q. Long, Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation, J. Biomech., 33 (2000), 975-984.
doi: 10.1016/S0021-9290(00)00043-9. |
[13] |
M. A. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODE's and hyperbolic PDE's, SIAM J. Multiscale Mod. Sim., 4 (2005), 215-236.
doi: 10.1137/030602010. |
[14] |
V. Milišić and A. Quarteroni, Analiysis of lumped parameter models for blood flow simulations and their relation with 1D models, ESAIM: Mathematical Modelling and Numerical Analysis., 38 (2004), 613-632.
doi: 10.1051/m2an:2004036. |
[15] |
A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: Problems, models and methods, Comput. Visual Sci., 2 (2000), 163-197.
doi: 10.1007/s007910050039. |
[16] |
I. C. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Non-Selfadjoint Operators, Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Berlin: Springer-Verlag, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[18] |
R. Curtain and G. Weiss, Exponential stabilization of well-posed systems by collocated feedback, SIAM J. Control & Optim., 45 (2006), 273-297.
doi: 10.1137/040610489. |
[19] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Adv anced Texts: Basler Lehrbücher., Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[20] |
R. Mennicken and M. Möller, Non-self-adjoint Boundary Eigenvalue Problems, North-Holland Mathematics Studies, 192. North-Holland Publishing Co., Amsterdam, 2003. |
[21] |
S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter System, Cambridge University Press, Cambridge, 1995. |
[22] |
G. Q. Xu and Y. X. Zhang, Vector-valued hyperbolic system and applications to complex networks of strings, Joint 48th IEEE CDC and 28th CCC, Shanghai, (2009), 6448-6453.
doi: 10.1109/CDC.2009.5400250. |
[23] |
R. M. Young, An Introduction to Nonharmonic Fourier Series, Pure and Applied Mathematics, 93. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. |
[24] |
G. Q. Xu, C. Liu and S. P. Yung, Necessary conditions for the exact observability of systems on Hilbert spaces, Systems & Control Letters, 57 (2008), 222-227.
doi: 10.1016/j.sysconle.2007.08.006. |
[25] |
G. Q. Xu and Y. F. Shang, Characteristic of left invertible semigroups and admissibility of observation operators, Systems & Control Letters, 58 (2009), 561-566.
doi: 10.1016/j.sysconle.2009.03.006. |
[26] |
G. Q. Xu and S. P. Yung, The expansion of semigroup and criterion of Riesz Basis, J. Diff. Equat., 210 (2005), 1-24.
doi: 10.1016/j.jde.2004.09.015. |
[27] |
G. Q. Xu, Z. J. Han and S. P. Yung, Riesz basis property of serially connected Timoshenko beams, International Journal of Control, 80 (2007), 470-485.
doi: 10.1080/00207170601100904. |
[28] |
G. Q. Xu and B. Z. Guo, Riesz basis property of Evolution equations in Hilbert space and application to a coupled string equation, SIAM J. Control & Optim., 42 (2003), 966-984.
doi: 10.1137/S0363012901400081. |
[29] |
B. Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks, SIAM J.Control & Optim., 43 (2004), 1234-1252.
doi: 10.1137/S0363012902420352. |
[1] |
Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations and Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026 |
[2] |
Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037 |
[3] |
Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014 |
[4] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 339-351. doi: 10.3934/naco.2021009 |
[5] |
Ali Wehbe, Marwa Koumaiha, Layla Toufaily. Boundary observability and exact controllability of strongly coupled wave equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1269-1305. doi: 10.3934/dcdss.2021091 |
[6] |
Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243 |
[7] |
Takahisa Inui, Nobu Kishimoto, Kuranosuke Nishimura. Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6299-6353. doi: 10.3934/dcds.2019275 |
[8] |
Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035 |
[9] |
Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074 |
[10] |
Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations and Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005 |
[11] |
Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control and Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004 |
[12] |
Feng Zhang, Wei Zhang, Pan Meng, Jianzhong Su. Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 637-651. doi: 10.3934/dcdsb.2011.16.637 |
[13] |
Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129 |
[14] |
Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481 |
[15] |
Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control and Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31 |
[16] |
Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325 |
[17] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[18] |
Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 387-407. doi: 10.3934/dcdss.2021068 |
[19] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations and Control Theory, 2022, 11 (2) : 605-619. doi: 10.3934/eect.2021016 |
[20] |
Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]