December  2014, 4(4): 521-554. doi: 10.3934/mcrf.2014.4.521

Observability and controllability analysis of blood flow network

1. 

Department of Mathematics, Tianjin University, Tianjin, 300072, China, China

Received  September 2013 Revised  January 2014 Published  September 2014

In this paper, we consider the initial-boundary value problem of a binary bifurcation model of the human arterial system. Firstly, we obtain a new pressure coupling condition at the junction based on the mass and energy conservation law. Then, we prove that the linearization system is interior well-posed and $L^2$ well-posed by using the semigroup theory of bounded linear operators. Further, by a complete spectral analysis for the system operator, we prove the completeness and Riesz basis property of the (generalized) eigenvectors of the system operator. Finally, we present some results on the boundary exact controllability and the boundary exact observability for the system.
Citation: Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521
References:
[1]

L. Formaggia, F. Nobile, A. Quarteroni and A. Venezini, Multiscale modelling of the circulatory system: A preliminary analysis,, Computing and visualization in science., 2 (1999), 75. doi: 10.1007/s007910050030.

[2]

A. Quarteroni and A. Venezini, Analysis of a geometrical multiscale model based on the coupling of ODE's and PDE's for blood flow simulation,, Multiscale Modeling & Simulation., 1 (2003), 173. doi: 10.1137/S1540345902408482.

[3]

L. Formaggia, J. F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels,, Comp. Meth. Appl. Mech. Engng., 191 (2001), 561. doi: 10.1016/S0045-7825(01)00302-4.

[4]

S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels,, Math. Methods Appl. Sci., 26 (2003), 1161. doi: 10.1002/mma.407.

[5]

T. Li and K. Zhao, Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model,, Netw. Heterog. Media., 6 (2011), 625. doi: 10.3934/nhm.2011.6.625.

[6]

S. J. Sherwin, V. Franke, J. Peiró and K. Parker, One-dimensional modelling of a vascular network in space-time variables,, J. Engineering Mathematics., 47 (2003), 217. doi: 10.1023/B:ENGI.0000007979.32871.e2.

[7]

A. Harloff, F. Albrecht, J. Spreer, A. F. Stalder, J. Bock, A. Frydrychowicz, J. Schöllhorn, A. Hetzel, M. Schumacher, J. Hennig and M. Markl, 3D blood blow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T,, Magnetic Resonance in Medicine., 61 (2009), 65.

[8]

F. N. van de Vosse and N. Stergiopulos, Pulse Wave Propagation in the Arterial Tree,, Annu. Rev. Fluid Mech., 43 (2011), 467. doi: 10.1146/annurev-fluid-122109-160730.

[9]

J. O. Barber, I. P. Alberding, J. M. Restrepo and T. W. Secomb, Simulated two-dimensional red blood cell motion, deformation and partitioning in microvessel bifurcations,, Ann Biomed Eng., 36 (2008), 1690. doi: 10.1007/s10439-008-9546-4.

[10]

L. Formaggia, D. Lamponi, M. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart,, Compute Methods Biomech Biomed Engin., 9 (2006), 273. doi: 10.1080/10255840600857767.

[11]

J. J. Wang and K. Parker, Wave propagation in a model for arterial circulation,, J. Biomech., 37 (2004), 457. doi: 10.1016/j.jbiomech.2003.09.007.

[12]

S. Z. Zhao, X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff and Q. Long, Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation,, J. Biomech., 33 (2000), 975. doi: 10.1016/S0021-9290(00)00043-9.

[13]

M. A. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODE's and hyperbolic PDE's,, SIAM J. Multiscale Mod. Sim., 4 (2005), 215. doi: 10.1137/030602010.

[14]

V. Milišić and A. Quarteroni, Analiysis of lumped parameter models for blood flow simulations and their relation with 1D models,, ESAIM: Mathematical Modelling and Numerical Analysis., 38 (2004), 613. doi: 10.1051/m2an:2004036.

[15]

A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: Problems, models and methods,, Comput. Visual Sci., 2 (2000), 163. doi: 10.1007/s007910050039.

[16]

I. C. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Non-Selfadjoint Operators,, Translations of Mathematical Monographs, (1969).

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Berlin: Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1.

[18]

R. Curtain and G. Weiss, Exponential stabilization of well-posed systems by collocated feedback,, SIAM J. Control & Optim., 45 (2006), 273. doi: 10.1137/040610489.

[19]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser Adv anced Texts: Basler Lehrbücher., (2009). doi: 10.1007/978-3-7643-8994-9.

[20]

R. Mennicken and M. Möller, Non-self-adjoint Boundary Eigenvalue Problems,, North-Holland Mathematics Studies, (2003).

[21]

S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter System,, Cambridge University Press, (1995).

[22]

G. Q. Xu and Y. X. Zhang, Vector-valued hyperbolic system and applications to complex networks of strings,, Joint 48th IEEE CDC and 28th CCC, (2009), 6448. doi: 10.1109/CDC.2009.5400250.

[23]

R. M. Young, An Introduction to Nonharmonic Fourier Series,, Pure and Applied Mathematics, (1980).

[24]

G. Q. Xu, C. Liu and S. P. Yung, Necessary conditions for the exact observability of systems on Hilbert spaces,, Systems & Control Letters, 57 (2008), 222. doi: 10.1016/j.sysconle.2007.08.006.

[25]

G. Q. Xu and Y. F. Shang, Characteristic of left invertible semigroups and admissibility of observation operators,, Systems & Control Letters, 58 (2009), 561. doi: 10.1016/j.sysconle.2009.03.006.

[26]

G. Q. Xu and S. P. Yung, The expansion of semigroup and criterion of Riesz Basis,, J. Diff. Equat., 210 (2005), 1. doi: 10.1016/j.jde.2004.09.015.

[27]

G. Q. Xu, Z. J. Han and S. P. Yung, Riesz basis property of serially connected Timoshenko beams,, International Journal of Control, 80 (2007), 470. doi: 10.1080/00207170601100904.

[28]

G. Q. Xu and B. Z. Guo, Riesz basis property of Evolution equations in Hilbert space and application to a coupled string equation,, SIAM J. Control & Optim., 42 (2003), 966. doi: 10.1137/S0363012901400081.

[29]

B. Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks,, SIAM J.Control & Optim., 43 (2004), 1234. doi: 10.1137/S0363012902420352.

show all references

References:
[1]

L. Formaggia, F. Nobile, A. Quarteroni and A. Venezini, Multiscale modelling of the circulatory system: A preliminary analysis,, Computing and visualization in science., 2 (1999), 75. doi: 10.1007/s007910050030.

[2]

A. Quarteroni and A. Venezini, Analysis of a geometrical multiscale model based on the coupling of ODE's and PDE's for blood flow simulation,, Multiscale Modeling & Simulation., 1 (2003), 173. doi: 10.1137/S1540345902408482.

[3]

L. Formaggia, J. F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels,, Comp. Meth. Appl. Mech. Engng., 191 (2001), 561. doi: 10.1016/S0045-7825(01)00302-4.

[4]

S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels,, Math. Methods Appl. Sci., 26 (2003), 1161. doi: 10.1002/mma.407.

[5]

T. Li and K. Zhao, Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model,, Netw. Heterog. Media., 6 (2011), 625. doi: 10.3934/nhm.2011.6.625.

[6]

S. J. Sherwin, V. Franke, J. Peiró and K. Parker, One-dimensional modelling of a vascular network in space-time variables,, J. Engineering Mathematics., 47 (2003), 217. doi: 10.1023/B:ENGI.0000007979.32871.e2.

[7]

A. Harloff, F. Albrecht, J. Spreer, A. F. Stalder, J. Bock, A. Frydrychowicz, J. Schöllhorn, A. Hetzel, M. Schumacher, J. Hennig and M. Markl, 3D blood blow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T,, Magnetic Resonance in Medicine., 61 (2009), 65.

[8]

F. N. van de Vosse and N. Stergiopulos, Pulse Wave Propagation in the Arterial Tree,, Annu. Rev. Fluid Mech., 43 (2011), 467. doi: 10.1146/annurev-fluid-122109-160730.

[9]

J. O. Barber, I. P. Alberding, J. M. Restrepo and T. W. Secomb, Simulated two-dimensional red blood cell motion, deformation and partitioning in microvessel bifurcations,, Ann Biomed Eng., 36 (2008), 1690. doi: 10.1007/s10439-008-9546-4.

[10]

L. Formaggia, D. Lamponi, M. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart,, Compute Methods Biomech Biomed Engin., 9 (2006), 273. doi: 10.1080/10255840600857767.

[11]

J. J. Wang and K. Parker, Wave propagation in a model for arterial circulation,, J. Biomech., 37 (2004), 457. doi: 10.1016/j.jbiomech.2003.09.007.

[12]

S. Z. Zhao, X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff and Q. Long, Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation,, J. Biomech., 33 (2000), 975. doi: 10.1016/S0021-9290(00)00043-9.

[13]

M. A. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODE's and hyperbolic PDE's,, SIAM J. Multiscale Mod. Sim., 4 (2005), 215. doi: 10.1137/030602010.

[14]

V. Milišić and A. Quarteroni, Analiysis of lumped parameter models for blood flow simulations and their relation with 1D models,, ESAIM: Mathematical Modelling and Numerical Analysis., 38 (2004), 613. doi: 10.1051/m2an:2004036.

[15]

A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: Problems, models and methods,, Comput. Visual Sci., 2 (2000), 163. doi: 10.1007/s007910050039.

[16]

I. C. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Non-Selfadjoint Operators,, Translations of Mathematical Monographs, (1969).

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Berlin: Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1.

[18]

R. Curtain and G. Weiss, Exponential stabilization of well-posed systems by collocated feedback,, SIAM J. Control & Optim., 45 (2006), 273. doi: 10.1137/040610489.

[19]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser Adv anced Texts: Basler Lehrbücher., (2009). doi: 10.1007/978-3-7643-8994-9.

[20]

R. Mennicken and M. Möller, Non-self-adjoint Boundary Eigenvalue Problems,, North-Holland Mathematics Studies, (2003).

[21]

S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter System,, Cambridge University Press, (1995).

[22]

G. Q. Xu and Y. X. Zhang, Vector-valued hyperbolic system and applications to complex networks of strings,, Joint 48th IEEE CDC and 28th CCC, (2009), 6448. doi: 10.1109/CDC.2009.5400250.

[23]

R. M. Young, An Introduction to Nonharmonic Fourier Series,, Pure and Applied Mathematics, (1980).

[24]

G. Q. Xu, C. Liu and S. P. Yung, Necessary conditions for the exact observability of systems on Hilbert spaces,, Systems & Control Letters, 57 (2008), 222. doi: 10.1016/j.sysconle.2007.08.006.

[25]

G. Q. Xu and Y. F. Shang, Characteristic of left invertible semigroups and admissibility of observation operators,, Systems & Control Letters, 58 (2009), 561. doi: 10.1016/j.sysconle.2009.03.006.

[26]

G. Q. Xu and S. P. Yung, The expansion of semigroup and criterion of Riesz Basis,, J. Diff. Equat., 210 (2005), 1. doi: 10.1016/j.jde.2004.09.015.

[27]

G. Q. Xu, Z. J. Han and S. P. Yung, Riesz basis property of serially connected Timoshenko beams,, International Journal of Control, 80 (2007), 470. doi: 10.1080/00207170601100904.

[28]

G. Q. Xu and B. Z. Guo, Riesz basis property of Evolution equations in Hilbert space and application to a coupled string equation,, SIAM J. Control & Optim., 42 (2003), 966. doi: 10.1137/S0363012901400081.

[29]

B. Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks,, SIAM J.Control & Optim., 43 (2004), 1234. doi: 10.1137/S0363012902420352.

[1]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[2]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[3]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[4]

Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control & Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004

[5]

Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074

[6]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

[7]

Feng Zhang, Wei Zhang, Pan Meng, Jianzhong Su. Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 637-651. doi: 10.3934/dcdsb.2011.16.637

[8]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[9]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[10]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[11]

Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431

[12]

Guohua Zhang. Variational principles of pressure. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[13]

V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks & Heterogeneous Media, 2006, 1 (4) : 621-637. doi: 10.3934/nhm.2006.1.621

[14]

Alberto M. Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Mathematical Biosciences & Engineering, 2011, 8 (2) : 409-423. doi: 10.3934/mbe.2011.8.409

[15]

Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini. The impact of cell crowding and active cell movement on vascular tumour growth. Networks & Heterogeneous Media, 2006, 1 (4) : 515-535. doi: 10.3934/nhm.2006.1.515

[16]

Vilmos Komornik, Bernadette Miara. Cross-like internal observability of rectangular membranes. Evolution Equations & Control Theory, 2014, 3 (1) : 135-146. doi: 10.3934/eect.2014.3.135

[17]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[18]

Vilmos Komornik, Paola Loreti. Observability of rectangular membranes and plates on small sets. Evolution Equations & Control Theory, 2014, 3 (2) : 287-304. doi: 10.3934/eect.2014.3.287

[19]

Sylvain Ervedoza, Enrique Zuazua. Observability of heat processes by transmutation without geometric restrictions. Mathematical Control & Related Fields, 2011, 1 (2) : 177-187. doi: 10.3934/mcrf.2011.1.177

[20]

Paola Loreti, Daniela Sforza. Inverse observability inequalities for integrodifferential equations in square domains. Evolution Equations & Control Theory, 2018, 7 (1) : 61-77. doi: 10.3934/eect.2018004

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]