-
Previous Article
Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition
- MCRF Home
- This Issue
- Next Article
On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's
1. | Institut Elie Cartan de Lorraine, UMR-CNRS 7502, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1, France |
References:
[1] |
F. Alabau-Boussouira, Indirect boundary observability of a weakly coupled wave system,, C. R. Acad. Sci. Paris, 333 (2001), 645.
doi: 10.1016/S0764-4442(01)02076-6. |
[2] |
F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems,, SIAM J. Control Opt., 42 (2003), 871.
doi: 10.1137/S0363012902402608. |
[3] |
F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled systems under geometric conditions,, C. R. Acad. Sci. Paris, 349 (2011), 395.
doi: 10.1016/j.crma.2011.02.004. |
[4] |
F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications,, Journal de Mathématiques Pures et Appliquées, 99 (2013), 544.
doi: 10.1016/j.matpur.2012.09.012. |
[5] |
F. Alabau-Boussouira, Insensitizing controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control,, Mathematics of Control, 26 (2014), 1.
doi: 10.1007/s00498-013-0112-8. |
[6] |
F. Alabau-Boussouira, Controllability of cascade coupled systems of multi-dimensional evolution PDE's by a reduced number of controls,, C. R. Acad. Sci. Paris, 350 (2012), 577.
doi: 10.1016/j.crma.2012.05.009. |
[7] |
F. Alabau-Boussouira, A hierarchic multi-levels energy method for the control of bi-diagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls,, Adv. in Differential Equations, 18 (2013), 1005.
|
[8] |
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey,, Mathematical Control and Related Fields, 1 (2011), 267.
doi: 10.3934/mcrf.2011.1.267. |
[9] |
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains,, C. R. Acad. Sci. Paris, 352 (2014), 391.
doi: 10.1016/j.crma.2014.03.004. |
[10] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Opt., 30 (1992), 1024.
doi: 10.1137/0330055. |
[11] |
F. Boyer and G. Olive, Approximate controllability conditions for some linear 1D parabolic systems with space- dependent coefficients,, Math. Control Relat. Fields, 4 (2014), 263.
doi: 10.3934/mcrf.2014.4.263. |
[12] |
J.-M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs, (2007).
|
[13] |
J.-M. Coron, S. Guerrero and L. Rosier, Null controllability of a parabolic system with a cubic coupling term,, SIAM J. Control Optim., 48 (2010), 5629.
doi: 10.1137/100784539. |
[14] |
R. Dáger, Insensitizing controls for the 1-D wave equation,, SIAM J. Control Opt., 45 (2006), 1758.
doi: 10.1137/060654372. |
[15] |
B. Dehman, J. Le Rousseau and M. Léautaud, Controllability of two coupled wave equations on a compact manifold,, ARMA, 211 (2014), 113.
doi: 10.1007/s00205-013-0670-4. |
[16] |
H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems,, Progress of Theoretical Physics, 69 (1983), 32.
doi: 10.1143/PTP.69.32. |
[17] |
O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations,, ESAIM COCV, 16 (2010), 247.
doi: 10.1051/cocv/2008077. |
[18] |
L. Kocarev, Z. Tasev, T. Stojanovski and U. Parlitz, Synchronizing spatiotemporal chaos,, Chaos, 7 (1997), 635.
doi: 10.1063/1.166263. |
[19] |
V. Komornik, Exact Controllability and Stabilization, The Multiplier Method,, Collection RMA, (1994).
|
[20] |
T. Li and B. Rao, Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls,, C. R. Acad. Sci. Paris, 351 (2013), 687.
doi: 10.1016/j.crma.2013.09.013. |
[21] |
T. Li and B. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math. Ser. B, 34 (2013), 139.
doi: 10.1007/s11401-012-0754-8. |
[22] |
J. L. Lions, Contrôlabilité Exacte et Stabilisation de Systèmes Distribués,, Vol. 1-2, (1988), 1. Google Scholar |
[23] |
J. L. Lions, Remarques préliminaires sur le contrôle des systèmes à données incomplètes,, in Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), (1989), 43. Google Scholar |
[24] |
G. Olive, Contrôlabilité de Systèmes Paraboliques Linéaires Couplés,, Thèse de doctorat de l'université d'Aix-Marseille, (2013). Google Scholar |
[25] |
L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations,, C. R. Acad. Sci. Paris, 349 (2011), 291.
doi: 10.1016/j.crma.2011.01.014. |
[26] |
L. Tebou, Locally distributed desensitizing controls for the wave equation,, C. R. Acad. Sci. Paris, 346 (2008), 407.
doi: 10.1016/j.crma.2008.02.019. |
[27] |
L. Tebou, Some results on the controllability of coupled semilinear wave equations: the desensitizing control case,, SIAM J. Control Opt., 49 (2011), 1221.
doi: 10.1137/100803080. |
[28] |
L. de Teresa, Insensitizing controls for a semilinear heat equation,, CPDE, 25 (2000), 39.
doi: 10.1080/03605300008821507. |
[29] |
L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation,, CPAA, 8 (2009), 457.
doi: 10.3934/cpaa.2009.8.457. |
[30] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009).
doi: 10.1007/978-3-7643-8994-9. |
[31] |
C. W. Wu and O. L. Chua, A unified framework for synchronization and control of dynamical systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 979.
doi: 10.1142/S0218127494000691. |
show all references
References:
[1] |
F. Alabau-Boussouira, Indirect boundary observability of a weakly coupled wave system,, C. R. Acad. Sci. Paris, 333 (2001), 645.
doi: 10.1016/S0764-4442(01)02076-6. |
[2] |
F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems,, SIAM J. Control Opt., 42 (2003), 871.
doi: 10.1137/S0363012902402608. |
[3] |
F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled systems under geometric conditions,, C. R. Acad. Sci. Paris, 349 (2011), 395.
doi: 10.1016/j.crma.2011.02.004. |
[4] |
F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications,, Journal de Mathématiques Pures et Appliquées, 99 (2013), 544.
doi: 10.1016/j.matpur.2012.09.012. |
[5] |
F. Alabau-Boussouira, Insensitizing controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control,, Mathematics of Control, 26 (2014), 1.
doi: 10.1007/s00498-013-0112-8. |
[6] |
F. Alabau-Boussouira, Controllability of cascade coupled systems of multi-dimensional evolution PDE's by a reduced number of controls,, C. R. Acad. Sci. Paris, 350 (2012), 577.
doi: 10.1016/j.crma.2012.05.009. |
[7] |
F. Alabau-Boussouira, A hierarchic multi-levels energy method for the control of bi-diagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls,, Adv. in Differential Equations, 18 (2013), 1005.
|
[8] |
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey,, Mathematical Control and Related Fields, 1 (2011), 267.
doi: 10.3934/mcrf.2011.1.267. |
[9] |
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains,, C. R. Acad. Sci. Paris, 352 (2014), 391.
doi: 10.1016/j.crma.2014.03.004. |
[10] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Opt., 30 (1992), 1024.
doi: 10.1137/0330055. |
[11] |
F. Boyer and G. Olive, Approximate controllability conditions for some linear 1D parabolic systems with space- dependent coefficients,, Math. Control Relat. Fields, 4 (2014), 263.
doi: 10.3934/mcrf.2014.4.263. |
[12] |
J.-M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs, (2007).
|
[13] |
J.-M. Coron, S. Guerrero and L. Rosier, Null controllability of a parabolic system with a cubic coupling term,, SIAM J. Control Optim., 48 (2010), 5629.
doi: 10.1137/100784539. |
[14] |
R. Dáger, Insensitizing controls for the 1-D wave equation,, SIAM J. Control Opt., 45 (2006), 1758.
doi: 10.1137/060654372. |
[15] |
B. Dehman, J. Le Rousseau and M. Léautaud, Controllability of two coupled wave equations on a compact manifold,, ARMA, 211 (2014), 113.
doi: 10.1007/s00205-013-0670-4. |
[16] |
H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems,, Progress of Theoretical Physics, 69 (1983), 32.
doi: 10.1143/PTP.69.32. |
[17] |
O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations,, ESAIM COCV, 16 (2010), 247.
doi: 10.1051/cocv/2008077. |
[18] |
L. Kocarev, Z. Tasev, T. Stojanovski and U. Parlitz, Synchronizing spatiotemporal chaos,, Chaos, 7 (1997), 635.
doi: 10.1063/1.166263. |
[19] |
V. Komornik, Exact Controllability and Stabilization, The Multiplier Method,, Collection RMA, (1994).
|
[20] |
T. Li and B. Rao, Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls,, C. R. Acad. Sci. Paris, 351 (2013), 687.
doi: 10.1016/j.crma.2013.09.013. |
[21] |
T. Li and B. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math. Ser. B, 34 (2013), 139.
doi: 10.1007/s11401-012-0754-8. |
[22] |
J. L. Lions, Contrôlabilité Exacte et Stabilisation de Systèmes Distribués,, Vol. 1-2, (1988), 1. Google Scholar |
[23] |
J. L. Lions, Remarques préliminaires sur le contrôle des systèmes à données incomplètes,, in Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), (1989), 43. Google Scholar |
[24] |
G. Olive, Contrôlabilité de Systèmes Paraboliques Linéaires Couplés,, Thèse de doctorat de l'université d'Aix-Marseille, (2013). Google Scholar |
[25] |
L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations,, C. R. Acad. Sci. Paris, 349 (2011), 291.
doi: 10.1016/j.crma.2011.01.014. |
[26] |
L. Tebou, Locally distributed desensitizing controls for the wave equation,, C. R. Acad. Sci. Paris, 346 (2008), 407.
doi: 10.1016/j.crma.2008.02.019. |
[27] |
L. Tebou, Some results on the controllability of coupled semilinear wave equations: the desensitizing control case,, SIAM J. Control Opt., 49 (2011), 1221.
doi: 10.1137/100803080. |
[28] |
L. de Teresa, Insensitizing controls for a semilinear heat equation,, CPDE, 25 (2000), 39.
doi: 10.1080/03605300008821507. |
[29] |
L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation,, CPAA, 8 (2009), 457.
doi: 10.3934/cpaa.2009.8.457. |
[30] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009).
doi: 10.1007/978-3-7643-8994-9. |
[31] |
C. W. Wu and O. L. Chua, A unified framework for synchronization and control of dynamical systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 979.
doi: 10.1142/S0218127494000691. |
[1] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[2] |
Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026 |
[3] |
Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699 |
[4] |
Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014 |
[5] |
Sergey Zelik. On the Lyapunov dimension of cascade systems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 971-985. doi: 10.3934/cpaa.2008.7.971 |
[6] |
Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639 |
[7] |
Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016 |
[8] |
Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243 |
[9] |
Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i |
[10] |
Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control & Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004 |
[11] |
Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026 |
[12] |
Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037 |
[13] |
Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 |
[14] |
Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021 |
[15] |
Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039 |
[16] |
Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014 |
[17] |
Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261 |
[18] |
Paola Loreti, Daniela Sforza. Inverse observability inequalities for integrodifferential equations in square domains. Evolution Equations & Control Theory, 2018, 7 (1) : 61-77. doi: 10.3934/eect.2018004 |
[19] |
Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060 |
[20] |
C.P. Walkden. Solutions to the twisted cocycle equation over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 935-946. doi: 10.3934/dcds.2000.6.935 |
2018 Impact Factor: 1.292
Tools
Metrics
Other articles
by authors
[Back to Top]