\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A quantitative internal unique continuation for stochastic parabolic equations

Abstract / Introduction Related Papers Cited by
  • This paper is addressed to a quantitative internal unique continuation property for stochastic parabolic equations, i.e., we show that each of their solutions can be determined by the observation on any nonempty open subset of the whole region in which the equations evolve. The proof is based on a global Carleman estimate.
    Mathematics Subject Classification: Primary: 60H15; Secondary: 34A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000), 113-127.doi: 10.1215/S0012-7094-00-10415-2.

    [2]

    L. Escauriaza and L. Vega, Carleman inequalities and the heat operator II, Indiana U. Math. J., 50 (2001), 1149-1169.doi: 10.1512/iumj.2001.50.1937.

    [3]

    V. Isakov, Carleman type estimates in an anisotropic case and applications, J. Differential Equations, 105 (1993), 217-238.doi: 10.1006/jdeq.1993.1088.

    [4]

    H. Li and Q. Lü, A quantitative boundary unique continuation for stochastic parabolic equations, J. Math. Anal. Appl., 402 (2013), 518-526.doi: 10.1016/j.jmaa.2013.01.038.

    [5]

    F. H. Lin, A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math., 43 (1990), 127-136.doi: 10.1002/cpa.3160430105.

    [6]

    Q. Lü, Observability estimate for stochastic Schrödinger equations and its applications, SIAM J. Control Optim., 51 (2013), 121-144.doi: 10.1137/110830964.

    [7]

    Q. Lü, Observability estimate and state observation problems for stochastic hyperbolic equations, Inverse Problems, 29 (2013), 095011, 22 pp.doi: 10.1088/0266-5611/29/9/095011.

    [8]

    C. C. Poon, Unique continuation for parabolic equations, Comm. Partial Differential Equations, 21 (1996), 521-539.doi: 10.1080/03605309608821195.

    [9]

    J.-C. Saut and B. Scheurer, Unique continuation for soome evolution equations, J. Differential Equations, 66 (1987), 118-139.doi: 10.1016/0022-0396(87)90043-X.

    [10]

    C. D. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat., 28 (1990), 159-182.doi: 10.1007/BF02387373.

    [11]

    S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations, SIAM J. Control Optim., 48 (2009), 2191-2216.doi: 10.1137/050641508.

    [12]

    H. Yamabe, A unique continuation theorem of a diffusion equation, Ann. Math., 69 (1959), 462-466.doi: 10.2307/1970194.

    [13]

    X. Zhang, Unique continuation for stochastic parabolic equations, Differential Integral Equations, 21 (2008), 81-93.

    [14]

    E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, in Handbook of Differential Equations: Evolutionary Differential Equations. Vol. III, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007, 527-621.doi: 10.1016/S1874-5717(07)80010-7.

    [15]

    C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem, Progress in Mathematics, 33, Birkhäuser, Boston, 1983.doi: 10.1007/978-1-4899-6656-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(157) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return