-
Previous Article
Inverse problems for the fourth order Schrödinger equation on a finite domain
- MCRF Home
- This Issue
-
Next Article
State constrained patchy feedback stabilization
A quantitative internal unique continuation for stochastic parabolic equations
1. | School of Mathematics, Sichuan Normal University, Chengdu, 610068, China |
References:
[1] |
L. Escauriaza, Carleman inequalities and the heat operator,, Duke Math. J., 104 (2000), 113.
doi: 10.1215/S0012-7094-00-10415-2. |
[2] |
L. Escauriaza and L. Vega, Carleman inequalities and the heat operator II,, Indiana U. Math. J., 50 (2001), 1149.
doi: 10.1512/iumj.2001.50.1937. |
[3] |
V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217.
doi: 10.1006/jdeq.1993.1088. |
[4] |
H. Li and Q. Lü, A quantitative boundary unique continuation for stochastic parabolic equations,, J. Math. Anal. Appl., 402 (2013), 518.
doi: 10.1016/j.jmaa.2013.01.038. |
[5] |
F. H. Lin, A uniqueness theorem for parabolic equations,, Comm. Pure Appl. Math., 43 (1990), 127.
doi: 10.1002/cpa.3160430105. |
[6] |
Q. Lü, Observability estimate for stochastic Schrödinger equations and its applications,, SIAM J. Control Optim., 51 (2013), 121.
doi: 10.1137/110830964. |
[7] |
Q. Lü, Observability estimate and state observation problems for stochastic hyperbolic equations,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/9/095011. |
[8] |
C. C. Poon, Unique continuation for parabolic equations,, Comm. Partial Differential Equations, 21 (1996), 521.
doi: 10.1080/03605309608821195. |
[9] |
J.-C. Saut and B. Scheurer, Unique continuation for soome evolution equations,, J. Differential Equations, 66 (1987), 118.
doi: 10.1016/0022-0396(87)90043-X. |
[10] |
C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159.
doi: 10.1007/BF02387373. |
[11] |
S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM J. Control Optim., 48 (2009), 2191.
doi: 10.1137/050641508. |
[12] |
H. Yamabe, A unique continuation theorem of a diffusion equation,, Ann. Math., 69 (1959), 462.
doi: 10.2307/1970194. |
[13] |
X. Zhang, Unique continuation for stochastic parabolic equations,, Differential Integral Equations, 21 (2008), 81.
|
[14] |
E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations. Vol. III, (2007), 527.
doi: 10.1016/S1874-5717(07)80010-7. |
[15] |
C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem,, Progress in Mathematics, (1983).
doi: 10.1007/978-1-4899-6656-8. |
show all references
References:
[1] |
L. Escauriaza, Carleman inequalities and the heat operator,, Duke Math. J., 104 (2000), 113.
doi: 10.1215/S0012-7094-00-10415-2. |
[2] |
L. Escauriaza and L. Vega, Carleman inequalities and the heat operator II,, Indiana U. Math. J., 50 (2001), 1149.
doi: 10.1512/iumj.2001.50.1937. |
[3] |
V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217.
doi: 10.1006/jdeq.1993.1088. |
[4] |
H. Li and Q. Lü, A quantitative boundary unique continuation for stochastic parabolic equations,, J. Math. Anal. Appl., 402 (2013), 518.
doi: 10.1016/j.jmaa.2013.01.038. |
[5] |
F. H. Lin, A uniqueness theorem for parabolic equations,, Comm. Pure Appl. Math., 43 (1990), 127.
doi: 10.1002/cpa.3160430105. |
[6] |
Q. Lü, Observability estimate for stochastic Schrödinger equations and its applications,, SIAM J. Control Optim., 51 (2013), 121.
doi: 10.1137/110830964. |
[7] |
Q. Lü, Observability estimate and state observation problems for stochastic hyperbolic equations,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/9/095011. |
[8] |
C. C. Poon, Unique continuation for parabolic equations,, Comm. Partial Differential Equations, 21 (1996), 521.
doi: 10.1080/03605309608821195. |
[9] |
J.-C. Saut and B. Scheurer, Unique continuation for soome evolution equations,, J. Differential Equations, 66 (1987), 118.
doi: 10.1016/0022-0396(87)90043-X. |
[10] |
C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159.
doi: 10.1007/BF02387373. |
[11] |
S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM J. Control Optim., 48 (2009), 2191.
doi: 10.1137/050641508. |
[12] |
H. Yamabe, A unique continuation theorem of a diffusion equation,, Ann. Math., 69 (1959), 462.
doi: 10.2307/1970194. |
[13] |
X. Zhang, Unique continuation for stochastic parabolic equations,, Differential Integral Equations, 21 (2008), 81.
|
[14] |
E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations. Vol. III, (2007), 527.
doi: 10.1016/S1874-5717(07)80010-7. |
[15] |
C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem,, Progress in Mathematics, (1983).
doi: 10.1007/978-1-4899-6656-8. |
[1] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[2] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[3] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[4] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[5] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[6] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[7] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[8] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[9] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[10] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[11] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[12] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[13] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[14] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[15] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[16] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[17] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[18] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
[19] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[20] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]