March  2015, 5(1): 165-176. doi: 10.3934/mcrf.2015.5.165

A quantitative internal unique continuation for stochastic parabolic equations

1. 

School of Mathematics, Sichuan Normal University, Chengdu, 610068, China

Received  January 2014 Revised  August 2014 Published  January 2015

This paper is addressed to a quantitative internal unique continuation property for stochastic parabolic equations, i.e., we show that each of their solutions can be determined by the observation on any nonempty open subset of the whole region in which the equations evolve. The proof is based on a global Carleman estimate.
Citation: Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165
References:
[1]

L. Escauriaza, Carleman inequalities and the heat operator,, Duke Math. J., 104 (2000), 113.  doi: 10.1215/S0012-7094-00-10415-2.  Google Scholar

[2]

L. Escauriaza and L. Vega, Carleman inequalities and the heat operator II,, Indiana U. Math. J., 50 (2001), 1149.  doi: 10.1512/iumj.2001.50.1937.  Google Scholar

[3]

V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217.  doi: 10.1006/jdeq.1993.1088.  Google Scholar

[4]

H. Li and Q. Lü, A quantitative boundary unique continuation for stochastic parabolic equations,, J. Math. Anal. Appl., 402 (2013), 518.  doi: 10.1016/j.jmaa.2013.01.038.  Google Scholar

[5]

F. H. Lin, A uniqueness theorem for parabolic equations,, Comm. Pure Appl. Math., 43 (1990), 127.  doi: 10.1002/cpa.3160430105.  Google Scholar

[6]

Q. Lü, Observability estimate for stochastic Schrödinger equations and its applications,, SIAM J. Control Optim., 51 (2013), 121.  doi: 10.1137/110830964.  Google Scholar

[7]

Q. Lü, Observability estimate and state observation problems for stochastic hyperbolic equations,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/9/095011.  Google Scholar

[8]

C. C. Poon, Unique continuation for parabolic equations,, Comm. Partial Differential Equations, 21 (1996), 521.  doi: 10.1080/03605309608821195.  Google Scholar

[9]

J.-C. Saut and B. Scheurer, Unique continuation for soome evolution equations,, J. Differential Equations, 66 (1987), 118.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[10]

C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159.  doi: 10.1007/BF02387373.  Google Scholar

[11]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM J. Control Optim., 48 (2009), 2191.  doi: 10.1137/050641508.  Google Scholar

[12]

H. Yamabe, A unique continuation theorem of a diffusion equation,, Ann. Math., 69 (1959), 462.  doi: 10.2307/1970194.  Google Scholar

[13]

X. Zhang, Unique continuation for stochastic parabolic equations,, Differential Integral Equations, 21 (2008), 81.   Google Scholar

[14]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations. Vol. III, (2007), 527.  doi: 10.1016/S1874-5717(07)80010-7.  Google Scholar

[15]

C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem,, Progress in Mathematics, (1983).  doi: 10.1007/978-1-4899-6656-8.  Google Scholar

show all references

References:
[1]

L. Escauriaza, Carleman inequalities and the heat operator,, Duke Math. J., 104 (2000), 113.  doi: 10.1215/S0012-7094-00-10415-2.  Google Scholar

[2]

L. Escauriaza and L. Vega, Carleman inequalities and the heat operator II,, Indiana U. Math. J., 50 (2001), 1149.  doi: 10.1512/iumj.2001.50.1937.  Google Scholar

[3]

V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217.  doi: 10.1006/jdeq.1993.1088.  Google Scholar

[4]

H. Li and Q. Lü, A quantitative boundary unique continuation for stochastic parabolic equations,, J. Math. Anal. Appl., 402 (2013), 518.  doi: 10.1016/j.jmaa.2013.01.038.  Google Scholar

[5]

F. H. Lin, A uniqueness theorem for parabolic equations,, Comm. Pure Appl. Math., 43 (1990), 127.  doi: 10.1002/cpa.3160430105.  Google Scholar

[6]

Q. Lü, Observability estimate for stochastic Schrödinger equations and its applications,, SIAM J. Control Optim., 51 (2013), 121.  doi: 10.1137/110830964.  Google Scholar

[7]

Q. Lü, Observability estimate and state observation problems for stochastic hyperbolic equations,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/9/095011.  Google Scholar

[8]

C. C. Poon, Unique continuation for parabolic equations,, Comm. Partial Differential Equations, 21 (1996), 521.  doi: 10.1080/03605309608821195.  Google Scholar

[9]

J.-C. Saut and B. Scheurer, Unique continuation for soome evolution equations,, J. Differential Equations, 66 (1987), 118.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[10]

C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159.  doi: 10.1007/BF02387373.  Google Scholar

[11]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM J. Control Optim., 48 (2009), 2191.  doi: 10.1137/050641508.  Google Scholar

[12]

H. Yamabe, A unique continuation theorem of a diffusion equation,, Ann. Math., 69 (1959), 462.  doi: 10.2307/1970194.  Google Scholar

[13]

X. Zhang, Unique continuation for stochastic parabolic equations,, Differential Integral Equations, 21 (2008), 81.   Google Scholar

[14]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations. Vol. III, (2007), 527.  doi: 10.1016/S1874-5717(07)80010-7.  Google Scholar

[15]

C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem,, Progress in Mathematics, (1983).  doi: 10.1007/978-1-4899-6656-8.  Google Scholar

[1]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[4]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[5]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[8]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[12]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[16]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[17]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[18]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[19]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]