\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Inverse problems for the fourth order Schrödinger equation on a finite domain

Abstract / Introduction Related Papers Cited by
  • In this paper we establish a global Carleman estimate for the fourth order Schrödinger equation with potential posed on a $1-d$ finite domain. The Carleman estimate is used to prove the Lipschitz stability for an inverse problem consisting in recovering a stationary potential in the Schrödinger equation from boundary measurements.
    Mathematics Subject Classification: Primary: 35R30, 35Q40; Secondary: 35L65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554.doi: 10.1088/0266-5611/18/6/307.

    [2]

    M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.doi: 10.1016/j.jfa.2009.06.010.

    [3]

    F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397.doi: 10.1137/100784278.

    [4]

    L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse Ill-Posed Probl., 16 (2008), 127-146.doi: 10.1515/JIIP.2008.009.

    [5]

    K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

    [6]

    S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254 (2008), 3037-3078.doi: 10.1016/j.jfa.2008.03.005.

    [7]

    G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles, Inverse Problems, 19 (2003), 985-996.doi: 10.1088/0266-5611/19/4/313.

    [8]

    E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.

    [9]

    X. Fu, Sharp observability inequalities for the 1-D plate equation with a potential, Chin. Ann. Math. Ser. B., 33 (2012), 91-106.doi: 10.1007/s11401-011-0689-5.

    [10]

    C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.doi: 10.1016/j.jmaa.2005.06.091.

    [11]

    L. Ignat, A. F. Pazoto and L. Rosier, Inverse problem for the heat equation and the Schrödinger equation on a tree, Inverse Problems, 28 (2012), 015011, 30 pp.doi: 10.1088/0266-5611/28/1/015011.

    [12]

    V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336-R1339.doi: 10.1103/PhysRevE.53.R1336.

    [13]

    V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. Rev. D, 144 (2000), 194-210.doi: 10.1016/S0167-2789(00)00078-6.

    [14]

    I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. $H^1(\Omega)$-estimates, J. Inverse Ill-Posed Probl., 12 (2004), 43-123.doi: 10.1163/156939404773972761.

    [15]

    E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM J. Control Optim., 32 (1994), 24-34.doi: 10.1137/S0363012991223145.

    [16]

    N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.doi: 10.1088/0266-5611/17/5/313.

    [17]

    A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017, 18 pp.doi: 10.1088/0266-5611/24/1/015017.

    [18]

    B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.doi: 10.4310/DPDE.2007.v4.n3.a1.

    [19]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [20]

    B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.doi: 10.1016/j.jfa.2008.11.009.

    [21]

    M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98.doi: 10.1016/S0021-7824(99)80010-5.

    [22]

    G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality, Chin. Ann. Math. Ser. B., 31 (2010), 555-578.doi: 10.1007/s11401-010-0585-4.

    [23]

    X. Zhang, Exact controllability of semilinear plate equations, Asympt. Anal., 27 (2001), 95-125.

    [24]

    C. Zheng and Z. Zhou, Exact controllability for the fourth order Schrödinger equation, Chin. Ann. Math. Ser. B., 33 (2012), 395-404.doi: 10.1007/s11401-012-0711-6.

    [25]

    Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(274) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return