March  2015, 5(1): 177-189. doi: 10.3934/mcrf.2015.5.177

Inverse problems for the fourth order Schrödinger equation on a finite domain

1. 

School of Mathematics, Laboratory of Mathematics and Complex Systems, Beijing Normal University, 100875 Beijing, China

Received  April 2014 Revised  September 2014 Published  January 2015

In this paper we establish a global Carleman estimate for the fourth order Schrödinger equation with potential posed on a $1-d$ finite domain. The Carleman estimate is used to prove the Lipschitz stability for an inverse problem consisting in recovering a stationary potential in the Schrödinger equation from boundary measurements.
Citation: Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177
References:
[1]

L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation,, Inverse Problems, 18 (2002), 1537.  doi: 10.1088/0266-5611/18/6/307.  Google Scholar

[2]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map,, J. Funct. Anal., 258 (2010), 161.  doi: 10.1016/j.jfa.2009.06.010.  Google Scholar

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications,, SIAM J. Control Optim., 48 (2010), 5357.  doi: 10.1137/100784278.  Google Scholar

[4]

L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip,, J. Inverse Ill-Posed Probl., 16 (2008), 127.  doi: 10.1515/JIIP.2008.009.  Google Scholar

[5]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).   Google Scholar

[6]

S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems,, J. Funct. Anal., 254 (2008), 3037.  doi: 10.1016/j.jfa.2008.03.005.  Google Scholar

[7]

G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles,, Inverse Problems, 19 (2003), 985.  doi: 10.1088/0266-5611/19/4/313.  Google Scholar

[8]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case,, Adv. Differential Equations, 5 (2000), 465.   Google Scholar

[9]

X. Fu, Sharp observability inequalities for the 1-D plate equation with a potential,, Chin. Ann. Math. Ser. B., 33 (2012), 91.  doi: 10.1007/s11401-011-0689-5.  Google Scholar

[10]

C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations,, J. Math. Anal. Appl., 320 (2006), 246.  doi: 10.1016/j.jmaa.2005.06.091.  Google Scholar

[11]

L. Ignat, A. F. Pazoto and L. Rosier, Inverse problem for the heat equation and the Schrödinger equation on a tree,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/1/015011.  Google Scholar

[12]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations,, Phys. Rev. E, 53 (1996).  doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[13]

V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion,, Phys. Rev. D, 144 (2000), 194.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[14]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. $H^1(\Omega)$-estimates,, J. Inverse Ill-Posed Probl., 12 (2004), 43.  doi: 10.1163/156939404773972761.  Google Scholar

[15]

E. Machtyngier, Exact controllability for the Schrödinger equation,, SIAM J. Control Optim., 32 (1994), 24.  doi: 10.1137/S0363012991223145.  Google Scholar

[16]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[17]

A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/1/015017.  Google Scholar

[18]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case,, Dyn. Partial Differ. Equ., 4 (2007), 197.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[20]

B. Pausader, The cubic fourth-order Schrödinger equation,, J. Funct. Anal., 256 (2009), 2473.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar

[21]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65.  doi: 10.1016/S0021-7824(99)80010-5.  Google Scholar

[22]

G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality,, Chin. Ann. Math. Ser. B., 31 (2010), 555.  doi: 10.1007/s11401-010-0585-4.  Google Scholar

[23]

X. Zhang, Exact controllability of semilinear plate equations,, Asympt. Anal., 27 (2001), 95.   Google Scholar

[24]

C. Zheng and Z. Zhou, Exact controllability for the fourth order Schrödinger equation,, Chin. Ann. Math. Ser. B., 33 (2012), 395.  doi: 10.1007/s11401-012-0711-6.  Google Scholar

[25]

Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation,, Taiwanese J. Math., 16 (2012), 1991.   Google Scholar

show all references

References:
[1]

L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation,, Inverse Problems, 18 (2002), 1537.  doi: 10.1088/0266-5611/18/6/307.  Google Scholar

[2]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map,, J. Funct. Anal., 258 (2010), 161.  doi: 10.1016/j.jfa.2009.06.010.  Google Scholar

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications,, SIAM J. Control Optim., 48 (2010), 5357.  doi: 10.1137/100784278.  Google Scholar

[4]

L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip,, J. Inverse Ill-Posed Probl., 16 (2008), 127.  doi: 10.1515/JIIP.2008.009.  Google Scholar

[5]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).   Google Scholar

[6]

S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems,, J. Funct. Anal., 254 (2008), 3037.  doi: 10.1016/j.jfa.2008.03.005.  Google Scholar

[7]

G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles,, Inverse Problems, 19 (2003), 985.  doi: 10.1088/0266-5611/19/4/313.  Google Scholar

[8]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case,, Adv. Differential Equations, 5 (2000), 465.   Google Scholar

[9]

X. Fu, Sharp observability inequalities for the 1-D plate equation with a potential,, Chin. Ann. Math. Ser. B., 33 (2012), 91.  doi: 10.1007/s11401-011-0689-5.  Google Scholar

[10]

C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations,, J. Math. Anal. Appl., 320 (2006), 246.  doi: 10.1016/j.jmaa.2005.06.091.  Google Scholar

[11]

L. Ignat, A. F. Pazoto and L. Rosier, Inverse problem for the heat equation and the Schrödinger equation on a tree,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/1/015011.  Google Scholar

[12]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations,, Phys. Rev. E, 53 (1996).  doi: 10.1103/PhysRevE.53.R1336.  Google Scholar

[13]

V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion,, Phys. Rev. D, 144 (2000), 194.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[14]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. $H^1(\Omega)$-estimates,, J. Inverse Ill-Posed Probl., 12 (2004), 43.  doi: 10.1163/156939404773972761.  Google Scholar

[15]

E. Machtyngier, Exact controllability for the Schrödinger equation,, SIAM J. Control Optim., 32 (1994), 24.  doi: 10.1137/S0363012991223145.  Google Scholar

[16]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[17]

A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/1/015017.  Google Scholar

[18]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case,, Dyn. Partial Differ. Equ., 4 (2007), 197.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[20]

B. Pausader, The cubic fourth-order Schrödinger equation,, J. Funct. Anal., 256 (2009), 2473.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar

[21]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65.  doi: 10.1016/S0021-7824(99)80010-5.  Google Scholar

[22]

G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality,, Chin. Ann. Math. Ser. B., 31 (2010), 555.  doi: 10.1007/s11401-010-0585-4.  Google Scholar

[23]

X. Zhang, Exact controllability of semilinear plate equations,, Asympt. Anal., 27 (2001), 95.   Google Scholar

[24]

C. Zheng and Z. Zhou, Exact controllability for the fourth order Schrödinger equation,, Chin. Ann. Math. Ser. B., 33 (2012), 395.  doi: 10.1007/s11401-012-0711-6.  Google Scholar

[25]

Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation,, Taiwanese J. Math., 16 (2012), 1991.   Google Scholar

[1]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[7]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[8]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[11]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[12]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[13]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[16]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[19]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[20]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (165)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]