- Previous Article
- MCRF Home
- This Issue
-
Next Article
A quantitative internal unique continuation for stochastic parabolic equations
Inverse problems for the fourth order Schrödinger equation on a finite domain
1. | School of Mathematics, Laboratory of Mathematics and Complex Systems, Beijing Normal University, 100875 Beijing, China |
References:
[1] |
L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554.
doi: 10.1088/0266-5611/18/6/307. |
[2] |
M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.
doi: 10.1016/j.jfa.2009.06.010. |
[3] |
F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397.
doi: 10.1137/100784278. |
[4] |
L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse Ill-Posed Probl., 16 (2008), 127-146.
doi: 10.1515/JIIP.2008.009. |
[5] |
K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[6] |
S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254 (2008), 3037-3078.
doi: 10.1016/j.jfa.2008.03.005. |
[7] |
G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles, Inverse Problems, 19 (2003), 985-996.
doi: 10.1088/0266-5611/19/4/313. |
[8] |
E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. |
[9] |
X. Fu, Sharp observability inequalities for the 1-D plate equation with a potential, Chin. Ann. Math. Ser. B., 33 (2012), 91-106.
doi: 10.1007/s11401-011-0689-5. |
[10] |
C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.
doi: 10.1016/j.jmaa.2005.06.091. |
[11] |
L. Ignat, A. F. Pazoto and L. Rosier, Inverse problem for the heat equation and the Schrödinger equation on a tree, Inverse Problems, 28 (2012), 015011, 30 pp.
doi: 10.1088/0266-5611/28/1/015011. |
[12] |
V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336-R1339.
doi: 10.1103/PhysRevE.53.R1336. |
[13] |
V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. Rev. D, 144 (2000), 194-210.
doi: 10.1016/S0167-2789(00)00078-6. |
[14] |
I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. $H^1(\Omega)$-estimates, J. Inverse Ill-Posed Probl., 12 (2004), 43-123.
doi: 10.1163/156939404773972761. |
[15] |
E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM J. Control Optim., 32 (1994), 24-34.
doi: 10.1137/S0363012991223145. |
[16] |
N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.
doi: 10.1088/0266-5611/17/5/313. |
[17] |
A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017, 18 pp.
doi: 10.1088/0266-5611/24/1/015017. |
[18] |
B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.
doi: 10.4310/DPDE.2007.v4.n3.a1. |
[19] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[20] |
B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.
doi: 10.1016/j.jfa.2008.11.009. |
[21] |
M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98.
doi: 10.1016/S0021-7824(99)80010-5. |
[22] |
G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality, Chin. Ann. Math. Ser. B., 31 (2010), 555-578.
doi: 10.1007/s11401-010-0585-4. |
[23] |
X. Zhang, Exact controllability of semilinear plate equations, Asympt. Anal., 27 (2001), 95-125. |
[24] |
C. Zheng and Z. Zhou, Exact controllability for the fourth order Schrödinger equation, Chin. Ann. Math. Ser. B., 33 (2012), 395-404.
doi: 10.1007/s11401-012-0711-6. |
[25] |
Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017. |
show all references
References:
[1] |
L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554.
doi: 10.1088/0266-5611/18/6/307. |
[2] |
M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.
doi: 10.1016/j.jfa.2009.06.010. |
[3] |
F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397.
doi: 10.1137/100784278. |
[4] |
L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse Ill-Posed Probl., 16 (2008), 127-146.
doi: 10.1515/JIIP.2008.009. |
[5] |
K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[6] |
S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254 (2008), 3037-3078.
doi: 10.1016/j.jfa.2008.03.005. |
[7] |
G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles, Inverse Problems, 19 (2003), 985-996.
doi: 10.1088/0266-5611/19/4/313. |
[8] |
E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. |
[9] |
X. Fu, Sharp observability inequalities for the 1-D plate equation with a potential, Chin. Ann. Math. Ser. B., 33 (2012), 91-106.
doi: 10.1007/s11401-011-0689-5. |
[10] |
C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.
doi: 10.1016/j.jmaa.2005.06.091. |
[11] |
L. Ignat, A. F. Pazoto and L. Rosier, Inverse problem for the heat equation and the Schrödinger equation on a tree, Inverse Problems, 28 (2012), 015011, 30 pp.
doi: 10.1088/0266-5611/28/1/015011. |
[12] |
V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336-R1339.
doi: 10.1103/PhysRevE.53.R1336. |
[13] |
V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. Rev. D, 144 (2000), 194-210.
doi: 10.1016/S0167-2789(00)00078-6. |
[14] |
I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. $H^1(\Omega)$-estimates, J. Inverse Ill-Posed Probl., 12 (2004), 43-123.
doi: 10.1163/156939404773972761. |
[15] |
E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM J. Control Optim., 32 (1994), 24-34.
doi: 10.1137/S0363012991223145. |
[16] |
N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.
doi: 10.1088/0266-5611/17/5/313. |
[17] |
A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017, 18 pp.
doi: 10.1088/0266-5611/24/1/015017. |
[18] |
B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.
doi: 10.4310/DPDE.2007.v4.n3.a1. |
[19] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[20] |
B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.
doi: 10.1016/j.jfa.2008.11.009. |
[21] |
M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98.
doi: 10.1016/S0021-7824(99)80010-5. |
[22] |
G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality, Chin. Ann. Math. Ser. B., 31 (2010), 555-578.
doi: 10.1007/s11401-010-0585-4. |
[23] |
X. Zhang, Exact controllability of semilinear plate equations, Asympt. Anal., 27 (2001), 95-125. |
[24] |
C. Zheng and Z. Zhou, Exact controllability for the fourth order Schrödinger equation, Chin. Ann. Math. Ser. B., 33 (2012), 395-404.
doi: 10.1007/s11401-012-0711-6. |
[25] |
Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017. |
[1] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[2] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[3] |
Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations and Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023 |
[4] |
Shuai Zhang, Shaopeng Xu. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3367-3385. doi: 10.3934/cpaa.2020149 |
[5] |
Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027 |
[6] |
Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843 |
[7] |
Editorial Office. Retraction: The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3785-3785. doi: 10.3934/cpaa.2020167 |
[8] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[9] |
Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037 |
[10] |
Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 |
[11] |
Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 |
[12] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[13] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[14] |
Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275 |
[15] |
Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174 |
[16] |
Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093 |
[17] |
Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122 |
[18] |
Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2721-2757. doi: 10.3934/dcdsb.2021156 |
[19] |
Roberto de A. Capistrano–Filho, Márcio Cavalcante, Fernando A. Gallego. Forcing operators on star graphs applied for the cubic fourth order Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3399-3434. doi: 10.3934/dcdsb.2021190 |
[20] |
Yanpeng Jin, Ying Fu. Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022072 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]