June  2015, 5(2): 191-235. doi: 10.3934/mcrf.2015.5.191

Feedback optimal control for stochastic Volterra equations with completely monotone kernels

1. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milano

2. 

Dipartimento di statistica e metodi quantitativi, Universitá degli studi di Milano Bicocca, Piazza dell'Ateneo Nuovo, 1 - 20126, Milano

Received  September 2013 Revised  August 2014 Published  April 2015

In this paper we are concerned with a class of stochastic Volterra integro-differential problems with completely monotone kernels, where we assume that the noise enters the system when we introduce a control. We start by reformulating the state equation into a semilinear evolution equation which can be treated by semigroup methods. The application to optimal control provides other interesting results and requires a precise description of the properties of the generated semigroup.
    The first main result of the paper is the proof of existence and uniqueness of a mild solution for the corresponding Hamilton-Jacobi-Bellman (HJB) equation. The main technical point consists in the differentiability of the BSDE associated with the reformulated equation with respect to its initial datum $x$.
Citation: Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control & Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191
References:
[1]

O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29 (2002), 145-155. doi: 10.1023/A:1016539022492.  Google Scholar

[2]

S. A. Belbas, A new method for optimal control of Volterra integral equations, Appl. Math. Comput., 189 (2007), 1902-1915. doi: 10.1016/j.amc.2006.12.077.  Google Scholar

[3]

S. Bonaccorsi, Some Applications in Malliavin Calculus, Ph.D thesis, Dept. Mathematics, Univ. Trento., 1998. Google Scholar

[4]

S. Bonaccorsi and G. Desch, Volterra equations in Banach spaces with completely monotone kernels, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 557-594. doi: 10.1007/s00030-012-0167-0.  Google Scholar

[5]

S. Bonaccorsi and E. Mastrogiacomo, An analytic approach to stochastic Volterra equations with completely monotone kernels, J. Evol. Equ., 9 (2009), 315-339. doi: 10.1007/s00028-009-0010-1.  Google Scholar

[6]

S. Bonaccorsi, F. Confortola and E. Mastrogiacomo, Optimal control for stochastic Volterra equations with completely monotone kernels, SIAM J. Control Optim., 50 (2012), 748-789. doi: 10.1137/100782875.  Google Scholar

[7]

P. Briand and F. Confortola, SDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Process. Appl., 118 (2008), 818-838. doi: 10.1016/j.spa.2007.06.006.  Google Scholar

[8]

F. Confortola and E. Mastrogiacomo, Optimal control for stochastic heat equation with memory, Evolution Equations and Control Theory, 3 (2014), 35-58. doi: 10.3934/eect.2014.3.35.  Google Scholar

[9]

G. Da Prato and J. Zabczyk, Evolution Equations with White-Noise Boundary Conditions, Cambridge Univ. Press, Cambridge, 1993. doi: 10.1080/17442509308833817.  Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[11]

A. Debussche, M. Fuhrman and G. Tessitore, Optimal control of a stochastic heat equation with boundary-noise and boundary-control, ESAIM Control Optim. Calc. Var., 13 (2007), 178-205 (electronic). doi: 10.1051/cocv:2007001.  Google Scholar

[12]

W. Desch and R. K. Miller, Exponential stabilization of Volterra integral equations with singular kernels, J. Integral Equations Appl., 1 (1988), 397-433. doi: 10.1216/JIE-1988-1-3-397.  Google Scholar

[13]

K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., {194}, Springer-Verlag, Berlin, 2000. Google Scholar

[14]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.  Google Scholar

[15]

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30 (2002), 1397-1465. doi: 10.1214/aop/1029867132.  Google Scholar

[16]

G. Gripenberg, S. O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, 1990. doi: 10.1017/CBO9780511662805.  Google Scholar

[17]

A. Grorud and E. Pardoux, Intégrales Hilbertiennes anticipantes par rapport à un processus de Wienner cylindrique et calcul stochastique associé, Appl. Math. Optim., 25 (1992), 31-49. doi: 10.1007/BF01184155.  Google Scholar

[18]

K. W. Homan, An Analytic Semigroup Approach to Convolution Volterra Equations, Ph.D. Thesis, Delft University Press, 2003. Google Scholar

[19]

G. E. Ladas and V. Lakshmikantham, Differential Equations in Abstract Spaces, Mathematics in Science and Engineering, 85, Academic Press, New York, 1972,  Google Scholar

[20]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, 2013 reprint of the 1995 original, Modern Birkhäuser Classics, Basel, 1995.  Google Scholar

[21]

F. Masiero, A stochastic optimal control problem for the heat equation on the halfline with dirichlet boundary-noise and boundary-control, Appl. Math. Optim., 62 (2010), 253-294. doi: 10.1007/s00245-010-9103-z.  Google Scholar

[22]

R. K. Miller, Linear Volterra integrodifferential equations as semigroups, Funkcial. Ekvac., 17 (1974), 39-55.  Google Scholar

[23]

D. Nualart, Malliavin Calculus and Related Topics, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.  Google Scholar

[24]

B. Øksendal and T. Zhang, The stochastic Volterra equation, in Barcelona Seminar on Stochastic Analysis (St. Feliu de Guíxols, 1991), Progr. Probab., 32, Birkhäuser, Basel, 1993, 168-202.  Google Scholar

[25]

B. Øksendal and T. Zhang, The general linear stochastic Volterra equations with anticipating coefficients, in Stochastic Analysis and Applications (Powys, 1995), World Sci. Publ., River Edge, NJ, 1996, 343-366.  Google Scholar

[26]

E. Pardoux, Nonlinear filtering, prediction and smoothing equations,, Stochastics, 6 (): 193.  doi: 10.1080/17442508208833204.  Google Scholar

[27]

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[28]

W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, Journal of Mathematical Physics, 30 (1989), 134-144. doi: 10.1063/1.528578.  Google Scholar

show all references

References:
[1]

O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29 (2002), 145-155. doi: 10.1023/A:1016539022492.  Google Scholar

[2]

S. A. Belbas, A new method for optimal control of Volterra integral equations, Appl. Math. Comput., 189 (2007), 1902-1915. doi: 10.1016/j.amc.2006.12.077.  Google Scholar

[3]

S. Bonaccorsi, Some Applications in Malliavin Calculus, Ph.D thesis, Dept. Mathematics, Univ. Trento., 1998. Google Scholar

[4]

S. Bonaccorsi and G. Desch, Volterra equations in Banach spaces with completely monotone kernels, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 557-594. doi: 10.1007/s00030-012-0167-0.  Google Scholar

[5]

S. Bonaccorsi and E. Mastrogiacomo, An analytic approach to stochastic Volterra equations with completely monotone kernels, J. Evol. Equ., 9 (2009), 315-339. doi: 10.1007/s00028-009-0010-1.  Google Scholar

[6]

S. Bonaccorsi, F. Confortola and E. Mastrogiacomo, Optimal control for stochastic Volterra equations with completely monotone kernels, SIAM J. Control Optim., 50 (2012), 748-789. doi: 10.1137/100782875.  Google Scholar

[7]

P. Briand and F. Confortola, SDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Process. Appl., 118 (2008), 818-838. doi: 10.1016/j.spa.2007.06.006.  Google Scholar

[8]

F. Confortola and E. Mastrogiacomo, Optimal control for stochastic heat equation with memory, Evolution Equations and Control Theory, 3 (2014), 35-58. doi: 10.3934/eect.2014.3.35.  Google Scholar

[9]

G. Da Prato and J. Zabczyk, Evolution Equations with White-Noise Boundary Conditions, Cambridge Univ. Press, Cambridge, 1993. doi: 10.1080/17442509308833817.  Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[11]

A. Debussche, M. Fuhrman and G. Tessitore, Optimal control of a stochastic heat equation with boundary-noise and boundary-control, ESAIM Control Optim. Calc. Var., 13 (2007), 178-205 (electronic). doi: 10.1051/cocv:2007001.  Google Scholar

[12]

W. Desch and R. K. Miller, Exponential stabilization of Volterra integral equations with singular kernels, J. Integral Equations Appl., 1 (1988), 397-433. doi: 10.1216/JIE-1988-1-3-397.  Google Scholar

[13]

K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., {194}, Springer-Verlag, Berlin, 2000. Google Scholar

[14]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.  Google Scholar

[15]

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30 (2002), 1397-1465. doi: 10.1214/aop/1029867132.  Google Scholar

[16]

G. Gripenberg, S. O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, 1990. doi: 10.1017/CBO9780511662805.  Google Scholar

[17]

A. Grorud and E. Pardoux, Intégrales Hilbertiennes anticipantes par rapport à un processus de Wienner cylindrique et calcul stochastique associé, Appl. Math. Optim., 25 (1992), 31-49. doi: 10.1007/BF01184155.  Google Scholar

[18]

K. W. Homan, An Analytic Semigroup Approach to Convolution Volterra Equations, Ph.D. Thesis, Delft University Press, 2003. Google Scholar

[19]

G. E. Ladas and V. Lakshmikantham, Differential Equations in Abstract Spaces, Mathematics in Science and Engineering, 85, Academic Press, New York, 1972,  Google Scholar

[20]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, 2013 reprint of the 1995 original, Modern Birkhäuser Classics, Basel, 1995.  Google Scholar

[21]

F. Masiero, A stochastic optimal control problem for the heat equation on the halfline with dirichlet boundary-noise and boundary-control, Appl. Math. Optim., 62 (2010), 253-294. doi: 10.1007/s00245-010-9103-z.  Google Scholar

[22]

R. K. Miller, Linear Volterra integrodifferential equations as semigroups, Funkcial. Ekvac., 17 (1974), 39-55.  Google Scholar

[23]

D. Nualart, Malliavin Calculus and Related Topics, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.  Google Scholar

[24]

B. Øksendal and T. Zhang, The stochastic Volterra equation, in Barcelona Seminar on Stochastic Analysis (St. Feliu de Guíxols, 1991), Progr. Probab., 32, Birkhäuser, Basel, 1993, 168-202.  Google Scholar

[25]

B. Øksendal and T. Zhang, The general linear stochastic Volterra equations with anticipating coefficients, in Stochastic Analysis and Applications (Powys, 1995), World Sci. Publ., River Edge, NJ, 1996, 343-366.  Google Scholar

[26]

E. Pardoux, Nonlinear filtering, prediction and smoothing equations,, Stochastics, 6 (): 193.  doi: 10.1080/17442508208833204.  Google Scholar

[27]

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[28]

W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, Journal of Mathematical Physics, 30 (1989), 134-144. doi: 10.1063/1.528578.  Google Scholar

[1]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control & Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[2]

Yushi Hamaguchi. Extended backward stochastic Volterra integral equations and their applications to time-Inconsistent stochastic recursive control problems. Mathematical Control & Related Fields, 2021, 11 (2) : 433-478. doi: 10.3934/mcrf.2020043

[3]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[4]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[5]

Tianxiao Wang, Yufeng Shi. Symmetrical solutions of backward stochastic Volterra integral equations and their applications. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 251-274. doi: 10.3934/dcdsb.2010.14.251

[6]

Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control & Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432

[8]

Ludger Overbeck, Jasmin A. L. Röder. Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 4-. doi: 10.1186/s41546-018-0030-2

[9]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[10]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[11]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[12]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[13]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[14]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[15]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[16]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[17]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[18]

Joscha Diehl, Jianfeng Zhang. Backward stochastic differential equations with Young drift. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 5-. doi: 10.1186/s41546-017-0016-5

[19]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[20]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]