\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Largest space for the stabilizability of the linearized compressible Navier-Stokes system in one dimension

Abstract Related Papers Cited by
  • In this paper we determine the largest space in which the linearized compressible Navier-Stokes system in one dimension, with periodic boundary conditions, is stabilizable with any prescribed exponential decay rate, by an interior control acting only in the velocity equation. As a consequence, it also follows that this largest space for the stabilizability with any prescribed exponential decay rate is also the largest one for the null controllability of the same system.
    Mathematics Subject Classification: Primary: 93C20, 93D15; Secondary: 34H05, 93B52, 35B35, 76N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. V. Amosova, Exact local controllability for the equations of viscous gas dynamics, Differential Equations, 47 (2011), 1776-1795.doi: 10.1134/S001226611112007X.

    [2]

    A. Bensoussan, G. Da Prato, M. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Second edition, Systems and Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2007.doi: 10.1007/978-0-8176-4581-6.

    [3]

    S. Chowdhury, M. Ramaswamy and J.-P. Raymond, Controllability and stabilizability of the linearized compressible Navier-Stokes system in one dimension, SIAM J. Control Optim., 50 (2012), 2959-2987.doi: 10.1137/110846683.

    [4]

    S. Chowdhury, D. Maity, M. Ramaswamy and J.-P. Raymond, Local stabilization of the compressible Navier-Stokes system, around a null velocity, in one dimension, to appear in J. Differential Equations. doi: 10.1016/j.jde.2015.02.025.

    [5]

    S. Chowdhury and D. Mitra, Null controllability for linearized compressible Navier-Stokes equations by moment method, J. Evol. Equ., (2014).doi: 10.1007/s00028-014-0263-1.

    [6]

    S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Null controllability of the linearized compressible Navier-Stokes system in one dimension, J. Differential Equations, 257 (2014), 3813-3849.doi: 10.1016/j.jde.2014.07.010.

    [7]

    R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4224-6.

    [8]

    S. Ervedoza, O. Glass, S. Guerrero and J.-P. Puel, Local exact controllability for the one-dimensional compressible Navier-Stokes equation, Arch. Rational Mech. Anal., 206 (2012), 189-238.doi: 10.1007/s00205-012-0534-3.

    [9]

    S. Kesavan and J.-P. Raymond, On a degenerate Riccati equation, Control Cybernet., 38 (2009), 1393-1410.

    [10]

    G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297-329.doi: 10.1007/s002050050078.

    [11]

    D. Mitra, M. Ramaswamy and J.-P. Raymond, Local stabilization of compressible Navier-Stokes equations in one dimension around non-zero velocity, submitted.

    [12]

    J. Zabczyk, Mathematical Control Theory. An Introduction, Reprint of the 1995 edition, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008.doi: 10.1007/978-0-8176-4733-9.

    [13]

    K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice Hall, Englewood Cliffs, New Jersey, 1995.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return