-
Previous Article
Stability and controllability of a wave equation with dynamical boundary control
- MCRF Home
- This Issue
-
Next Article
Largest space for the stabilizability of the linearized compressible Navier-Stokes system in one dimension
A note on optimality conditions for optimal exit time problems
1. | Università di Padova, Dipartimento di Matematica, via Trieste 63, 35121 Padova, Italy |
References:
[1] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamiltonian-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser, Boston, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[2] |
P. Cannarsa, A. Marigonda and K. T. Nguyen, Optimality conditions and regularity results for time optimal control problems with differential inclusions, J. Math. Anal. Appl., 427 (2015), 202-228.
doi: 10.1016/j.jmaa.2015.02.027. |
[3] |
P. Cannarsa, C. Pignotti and C. Sinestrari, Semiconcavity for optimal control problems with exit time, Discrete Contin. Dynam. Systems, 6 (2000), 975-997.
doi: 10.3934/dcds.2000.6.975. |
[4] |
P. Cannarsa and C. Sinestrari, Convexity properties of the minimun time function, Calc. Var. Partial Differential Equations, 3 (1995), 273-298.
doi: 10.1007/BF01189393. |
[5] |
P. Cannarsa and C. Sinestrari, On a class of nonlinear time optimal control problems, Discrete Contin. Dynam. Systems, 1 (1995), 285-300.
doi: 10.3934/dcds.1995.1.285. |
[6] |
P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, 2004. |
[7] |
H. Frankowska and L. V. Nguyen, Local regularity of the minimum time function, J. Optim. Theory. Appl., 164 (2005), 68-91.
doi: 10.1007/s10957-014-0575-x. |
[8] |
E. B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley & Sons, Inc., New York-London-Sydney, 1967. |
[9] |
C. Pignotti, Rectifiability results for singular and conjugate points of optimal exit time problems, J. Math. Anal. Appl., 270 (2002), 681-708.
doi: 10.1016/S0022-247X(02)00110-5. |
show all references
References:
[1] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamiltonian-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser, Boston, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[2] |
P. Cannarsa, A. Marigonda and K. T. Nguyen, Optimality conditions and regularity results for time optimal control problems with differential inclusions, J. Math. Anal. Appl., 427 (2015), 202-228.
doi: 10.1016/j.jmaa.2015.02.027. |
[3] |
P. Cannarsa, C. Pignotti and C. Sinestrari, Semiconcavity for optimal control problems with exit time, Discrete Contin. Dynam. Systems, 6 (2000), 975-997.
doi: 10.3934/dcds.2000.6.975. |
[4] |
P. Cannarsa and C. Sinestrari, Convexity properties of the minimun time function, Calc. Var. Partial Differential Equations, 3 (1995), 273-298.
doi: 10.1007/BF01189393. |
[5] |
P. Cannarsa and C. Sinestrari, On a class of nonlinear time optimal control problems, Discrete Contin. Dynam. Systems, 1 (1995), 285-300.
doi: 10.3934/dcds.1995.1.285. |
[6] |
P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, 2004. |
[7] |
H. Frankowska and L. V. Nguyen, Local regularity of the minimum time function, J. Optim. Theory. Appl., 164 (2005), 68-91.
doi: 10.1007/s10957-014-0575-x. |
[8] |
E. B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley & Sons, Inc., New York-London-Sydney, 1967. |
[9] |
C. Pignotti, Rectifiability results for singular and conjugate points of optimal exit time problems, J. Math. Anal. Appl., 270 (2002), 681-708.
doi: 10.1016/S0022-247X(02)00110-5. |
[1] |
Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure and Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757 |
[2] |
Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 |
[3] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[4] |
Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499 |
[5] |
Ricardo Almeida. Optimality conditions for fractional variational problems with free terminal time. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 1-19. doi: 10.3934/dcdss.2018001 |
[6] |
Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145 |
[7] |
Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2971-2989. doi: 10.3934/jimo.2019089 |
[8] |
M. Motta, C. Sartori. Exit time problems for nonlinear unbounded control systems. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 137-156. doi: 10.3934/dcds.1999.5.137 |
[9] |
Piermarco Cannarsa, Cristina Pignotti, Carlo Sinestrari. Semiconcavity for optimal control problems with exit time. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 975-997. doi: 10.3934/dcds.2000.6.975 |
[10] |
Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086 |
[11] |
Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483 |
[12] |
Adela Capătă. Optimality conditions for vector equilibrium problems and their applications. Journal of Industrial and Management Optimization, 2013, 9 (3) : 659-669. doi: 10.3934/jimo.2013.9.659 |
[13] |
Qiu-Sheng Qiu. Optimality conditions for vector equilibrium problems with constraints. Journal of Industrial and Management Optimization, 2009, 5 (4) : 783-790. doi: 10.3934/jimo.2009.5.783 |
[14] |
Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial and Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47 |
[15] |
Gang Li, Yinghong Xu, Zhenhua Qin. Optimality conditions for composite DC infinite programming problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022064 |
[16] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control and Related Fields, 2021, 11 (4) : 829-855. doi: 10.3934/mcrf.2020048 |
[17] |
Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control and Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018 |
[18] |
H. O. Fattorini. The maximum principle in infinite dimension. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557 |
[19] |
Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43 |
[20] |
Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]