June  2015, 5(2): 305-320. doi: 10.3934/mcrf.2015.5.305

Stability and controllability of a wave equation with dynamical boundary control

1. 

Université de Strasbourg, Institut de Recherche Mathématique Avancée, 7 rue René Descartes, 67084 Strasbourg, France

2. 

Université Libanaise, EDST et Faculté des sciences I, Equipe EDP-AN, Hadath, Beyrouth, Lebanon

3. 

Université Libanaise, Sciences 1 et EDST, Equipe EDP-AN, Hadath, Beyrouth

Received  December 2013 Revised  June 2014 Published  April 2015

In this work, we consider the stabilization and the exact controllability of a wave equation with dynamical boundary control. We first prove the strong stability of the system and establish a polynomial decay rate for smooth solutions. We next show the exact controllability by means of a singular dynamical boundary control.
Citation: Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305
References:
[1]

W. Arendt and C. J. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837. doi: 10.1090/S0002-9947-1988-0933321-3.

[2]

C. D. Benchimol, A note on weak stabilization of contraction semi-groups,, SIAM J. Control Optim., 16 (1978), 373. doi: 10.1137/0316023.

[3]

H. Brezis, Analyse Fonctionelle. Théorie et Applications,, Collection Mathématiques Appliquées pour la Maîtrise, (1983).

[4]

N. Garofalo and F.-H. Lin, Unique continuation for elliptic operators: A geometric-variational approach,, Comm. Pure Appl. Math., 40 (1987), 347. doi: 10.1002/cpa.3160400305.

[5]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. of Diff. Eqs., 1 (1985), 43.

[6]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, RAM: Research in Applied Mathematics, (1994).

[7]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués,, Vol. I, (1988).

[8]

J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001.

[9]

J.-L. Lions and E. Magenes, Problemes aux Limites Non-Homogenes et Applications,, Vol. 1, (1968).

[10]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, Research Notes in Mathematics, (1999).

[11]

Ö. Morgül, Dynamic boundary control of a Euler-Bernoulli beam,, IEEE Transactions on Automatic Control, 37 (1992), 639. doi: 10.1109/9.135504.

[12]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1.

[13]

J. Prüss, On the spectrum of $C^0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847. doi: 10.2307/1999112.

[14]

B. Rao, Stabilization of elastic plates with dynamical boundary control,, SIAM J. Control Optim., 36 (1998), 148. doi: 10.1137/S0363012996300975.

[15]

B. Rao, Exact boundary controllability of a hybrid system of elasticity by the HUM method,, ESIAM: COCV, 6 (2001), 183. doi: 10.1051/cocv:2001107.

[16]

B. Rao and A. Wehbe, Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent,, J. Evol. Equ., 5 (2005), 137. doi: 10.1007/s00028-005-0171-5.

[17]

D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems,, J. Math. Anal. Appl., 173 (1993), 339. doi: 10.1006/jmaa.1993.1071.

[18]

M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control,, Math. Control Signals Systems, 2 (1989), 265. doi: 10.1007/BF02551387.

[19]

A. Wehbe, Rational energy decay rate in a wave equation with dynamical control,, Appl. Math. Letters, 16 (2003), 357. doi: 10.1016/S0893-9659(03)80057-5.

[20]

A. Wehbe, Observability and controllability for a vibrating string with dynamical boundary control,, Electr. J. Diff. Equ., (2010), 1.

[21]

A. Wehbe, Optimal energy decay rate in the Rayleigh beam equation with boundary dynamical controls,, Bull. Belg. Math. Soc., 13 (2006), 385.

show all references

References:
[1]

W. Arendt and C. J. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837. doi: 10.1090/S0002-9947-1988-0933321-3.

[2]

C. D. Benchimol, A note on weak stabilization of contraction semi-groups,, SIAM J. Control Optim., 16 (1978), 373. doi: 10.1137/0316023.

[3]

H. Brezis, Analyse Fonctionelle. Théorie et Applications,, Collection Mathématiques Appliquées pour la Maîtrise, (1983).

[4]

N. Garofalo and F.-H. Lin, Unique continuation for elliptic operators: A geometric-variational approach,, Comm. Pure Appl. Math., 40 (1987), 347. doi: 10.1002/cpa.3160400305.

[5]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. of Diff. Eqs., 1 (1985), 43.

[6]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, RAM: Research in Applied Mathematics, (1994).

[7]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués,, Vol. I, (1988).

[8]

J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001.

[9]

J.-L. Lions and E. Magenes, Problemes aux Limites Non-Homogenes et Applications,, Vol. 1, (1968).

[10]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, Research Notes in Mathematics, (1999).

[11]

Ö. Morgül, Dynamic boundary control of a Euler-Bernoulli beam,, IEEE Transactions on Automatic Control, 37 (1992), 639. doi: 10.1109/9.135504.

[12]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1.

[13]

J. Prüss, On the spectrum of $C^0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847. doi: 10.2307/1999112.

[14]

B. Rao, Stabilization of elastic plates with dynamical boundary control,, SIAM J. Control Optim., 36 (1998), 148. doi: 10.1137/S0363012996300975.

[15]

B. Rao, Exact boundary controllability of a hybrid system of elasticity by the HUM method,, ESIAM: COCV, 6 (2001), 183. doi: 10.1051/cocv:2001107.

[16]

B. Rao and A. Wehbe, Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent,, J. Evol. Equ., 5 (2005), 137. doi: 10.1007/s00028-005-0171-5.

[17]

D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems,, J. Math. Anal. Appl., 173 (1993), 339. doi: 10.1006/jmaa.1993.1071.

[18]

M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control,, Math. Control Signals Systems, 2 (1989), 265. doi: 10.1007/BF02551387.

[19]

A. Wehbe, Rational energy decay rate in a wave equation with dynamical control,, Appl. Math. Letters, 16 (2003), 357. doi: 10.1016/S0893-9659(03)80057-5.

[20]

A. Wehbe, Observability and controllability for a vibrating string with dynamical boundary control,, Electr. J. Diff. Equ., (2010), 1.

[21]

A. Wehbe, Optimal energy decay rate in the Rayleigh beam equation with boundary dynamical controls,, Bull. Belg. Math. Soc., 13 (2006), 385.

[1]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[2]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[3]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[4]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[5]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[6]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[7]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[8]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[9]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[10]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[11]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[12]

Tomáš Bárta. Exact rate of decay for solutions to damped second order ODE's with a degenerate potential. Evolution Equations & Control Theory, 2018, 7 (4) : 531-543. doi: 10.3934/eect.2018025

[13]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[14]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[15]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[16]

Ning-An Lai, Jinglei Zhao. Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1317-1325. doi: 10.3934/cpaa.2014.13.1317

[17]

Jibin Li, Fengjuan Chen. Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 163-172. doi: 10.3934/dcdsb.2013.18.163

[18]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[19]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[20]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]