June  2015, 5(2): 305-320. doi: 10.3934/mcrf.2015.5.305

Stability and controllability of a wave equation with dynamical boundary control

1. 

Université de Strasbourg, Institut de Recherche Mathématique Avancée, 7 rue René Descartes, 67084 Strasbourg, France

2. 

Université Libanaise, EDST et Faculté des sciences I, Equipe EDP-AN, Hadath, Beyrouth, Lebanon

3. 

Université Libanaise, Sciences 1 et EDST, Equipe EDP-AN, Hadath, Beyrouth

Received  December 2013 Revised  June 2014 Published  April 2015

In this work, we consider the stabilization and the exact controllability of a wave equation with dynamical boundary control. We first prove the strong stability of the system and establish a polynomial decay rate for smooth solutions. We next show the exact controllability by means of a singular dynamical boundary control.
Citation: Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305
References:
[1]

W. Arendt and C. J. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[2]

C. D. Benchimol, A note on weak stabilization of contraction semi-groups,, SIAM J. Control Optim., 16 (1978), 373.  doi: 10.1137/0316023.  Google Scholar

[3]

H. Brezis, Analyse Fonctionelle. Théorie et Applications,, Collection Mathématiques Appliquées pour la Maîtrise, (1983).   Google Scholar

[4]

N. Garofalo and F.-H. Lin, Unique continuation for elliptic operators: A geometric-variational approach,, Comm. Pure Appl. Math., 40 (1987), 347.  doi: 10.1002/cpa.3160400305.  Google Scholar

[5]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. of Diff. Eqs., 1 (1985), 43.   Google Scholar

[6]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, RAM: Research in Applied Mathematics, (1994).   Google Scholar

[7]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués,, Vol. I, (1988).   Google Scholar

[8]

J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[9]

J.-L. Lions and E. Magenes, Problemes aux Limites Non-Homogenes et Applications,, Vol. 1, (1968).   Google Scholar

[10]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, Research Notes in Mathematics, (1999).   Google Scholar

[11]

Ö. Morgül, Dynamic boundary control of a Euler-Bernoulli beam,, IEEE Transactions on Automatic Control, 37 (1992), 639.  doi: 10.1109/9.135504.  Google Scholar

[12]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[13]

J. Prüss, On the spectrum of $C^0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[14]

B. Rao, Stabilization of elastic plates with dynamical boundary control,, SIAM J. Control Optim., 36 (1998), 148.  doi: 10.1137/S0363012996300975.  Google Scholar

[15]

B. Rao, Exact boundary controllability of a hybrid system of elasticity by the HUM method,, ESIAM: COCV, 6 (2001), 183.  doi: 10.1051/cocv:2001107.  Google Scholar

[16]

B. Rao and A. Wehbe, Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent,, J. Evol. Equ., 5 (2005), 137.  doi: 10.1007/s00028-005-0171-5.  Google Scholar

[17]

D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems,, J. Math. Anal. Appl., 173 (1993), 339.  doi: 10.1006/jmaa.1993.1071.  Google Scholar

[18]

M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control,, Math. Control Signals Systems, 2 (1989), 265.  doi: 10.1007/BF02551387.  Google Scholar

[19]

A. Wehbe, Rational energy decay rate in a wave equation with dynamical control,, Appl. Math. Letters, 16 (2003), 357.  doi: 10.1016/S0893-9659(03)80057-5.  Google Scholar

[20]

A. Wehbe, Observability and controllability for a vibrating string with dynamical boundary control,, Electr. J. Diff. Equ., (2010), 1.   Google Scholar

[21]

A. Wehbe, Optimal energy decay rate in the Rayleigh beam equation with boundary dynamical controls,, Bull. Belg. Math. Soc., 13 (2006), 385.   Google Scholar

show all references

References:
[1]

W. Arendt and C. J. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[2]

C. D. Benchimol, A note on weak stabilization of contraction semi-groups,, SIAM J. Control Optim., 16 (1978), 373.  doi: 10.1137/0316023.  Google Scholar

[3]

H. Brezis, Analyse Fonctionelle. Théorie et Applications,, Collection Mathématiques Appliquées pour la Maîtrise, (1983).   Google Scholar

[4]

N. Garofalo and F.-H. Lin, Unique continuation for elliptic operators: A geometric-variational approach,, Comm. Pure Appl. Math., 40 (1987), 347.  doi: 10.1002/cpa.3160400305.  Google Scholar

[5]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. of Diff. Eqs., 1 (1985), 43.   Google Scholar

[6]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, RAM: Research in Applied Mathematics, (1994).   Google Scholar

[7]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués,, Vol. I, (1988).   Google Scholar

[8]

J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[9]

J.-L. Lions and E. Magenes, Problemes aux Limites Non-Homogenes et Applications,, Vol. 1, (1968).   Google Scholar

[10]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, Research Notes in Mathematics, (1999).   Google Scholar

[11]

Ö. Morgül, Dynamic boundary control of a Euler-Bernoulli beam,, IEEE Transactions on Automatic Control, 37 (1992), 639.  doi: 10.1109/9.135504.  Google Scholar

[12]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[13]

J. Prüss, On the spectrum of $C^0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[14]

B. Rao, Stabilization of elastic plates with dynamical boundary control,, SIAM J. Control Optim., 36 (1998), 148.  doi: 10.1137/S0363012996300975.  Google Scholar

[15]

B. Rao, Exact boundary controllability of a hybrid system of elasticity by the HUM method,, ESIAM: COCV, 6 (2001), 183.  doi: 10.1051/cocv:2001107.  Google Scholar

[16]

B. Rao and A. Wehbe, Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent,, J. Evol. Equ., 5 (2005), 137.  doi: 10.1007/s00028-005-0171-5.  Google Scholar

[17]

D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems,, J. Math. Anal. Appl., 173 (1993), 339.  doi: 10.1006/jmaa.1993.1071.  Google Scholar

[18]

M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control,, Math. Control Signals Systems, 2 (1989), 265.  doi: 10.1007/BF02551387.  Google Scholar

[19]

A. Wehbe, Rational energy decay rate in a wave equation with dynamical control,, Appl. Math. Letters, 16 (2003), 357.  doi: 10.1016/S0893-9659(03)80057-5.  Google Scholar

[20]

A. Wehbe, Observability and controllability for a vibrating string with dynamical boundary control,, Electr. J. Diff. Equ., (2010), 1.   Google Scholar

[21]

A. Wehbe, Optimal energy decay rate in the Rayleigh beam equation with boundary dynamical controls,, Bull. Belg. Math. Soc., 13 (2006), 385.   Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[13]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]