June  2015, 5(2): 321-333. doi: 10.3934/mcrf.2015.5.321

Exponential stability of a joint-leg-beam system with memory damping

1. 

School of Mathematics, Beijing Institute of Technology, Beijing, 100081, China

Received  March 2014 Revised  July 2014 Published  April 2015

In this paper, we consider a system for combined axial and transverse motions of two viscoelastic Euler-Bernoulli beams connected through two legs to a joint. This model comes from rigidizable and inflatable space structures. First, the exponential stability of the joint-leg-beam system is obtained when both beams are subject to viscoelastic damping and memory kernels satisfy reasonable assumptions. Then, we show the lack of uniform decay of the coupled system when only one beam is assumed to have a memory damping and the second beam has no damping.
Citation: Qiong Zhang. Exponential stability of a joint-leg-beam system with memory damping. Mathematical Control & Related Fields, 2015, 5 (2) : 321-333. doi: 10.3934/mcrf.2015.5.321
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM Journal on Control and Optimization, 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[2]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces,, Journal of Evolution Equations, 8 (2008), 765.  doi: 10.1007/s00028-008-0424-1.  Google Scholar

[3]

J. A. Burns, E. M. Cliff, Z. Liu and R. D. Spies, On coupled transversal and axial motions of two beams with a joint,, Journal of Mathematical Analysis and Applications, 339 (2008), 182.  doi: 10.1016/j.jmaa.2007.06.047.  Google Scholar

[4]

J. A. Burns, E. M. Cliff, Z. Liu and R. D. Spies, Polynomial stability of a joint-leg-beam system with local damping,, Mathematical and Computer Modelling, 46 (2007), 1236.  doi: 10.1016/j.mcm.2006.11.037.  Google Scholar

[5]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, Asymptotic Analysis, 46 (2006), 251.   Google Scholar

[6]

E. M. Cliff, B. Fulton, T. Herdman, Z. Liu and R. D. Spies, Well posedness and exponential stability of a thermoelastic joint-leg-beam system with Robin boundary conditions,, Mathematical and Computer Modelling, 49 (2009), 1097.  doi: 10.1016/j.mcm.2008.03.018.  Google Scholar

[7]

M. Fabrizio, C. Giorgi and V. Pata, A new approach to equations with memory,, Archive for Rational Mechanics and Analysis, 198 (2010), 189.  doi: 10.1007/s00205-010-0300-3.  Google Scholar

[8]

K. Guidanean and D. Lichodziejewski, An Inflatable Rigidizable Truss Structure Based on new Sub-Tg Polyurethane Composites,, AIAA Paper 02-1593, (2002), 02.  doi: 10.2514/6.2002-1593.  Google Scholar

[9]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Annals of Differential Equations, 1 (1985), 43.   Google Scholar

[10]

F. L. Huang, Strong asymptotic stability of linear dynamical systems in Banach spaces,, Journal of Differential Equations, 104 (1993), 307.  doi: 10.1006/jdeq.1993.1074.  Google Scholar

[11]

C. H. M. Jenkins, ed., Gossamer Spacecraft: Membrane and Inflatable Technology for Space Applications,, AIAA Progress in Aeronautics and Astronautics, (2001).   Google Scholar

[12]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures,, Birkhäuser, (1994).  doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[13]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity,, Zeitschrift für angewandte Mathematik und Physik, 53 (2002), 265.  doi: 10.1007/s00033-002-8155-6.  Google Scholar

[14]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[15]

J. Prüss, On the spectrum of $C_0-$semigroups,, Transactions of the American Mathematical Society, 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[16]

B. Rao, Stabilization of elastic plates with dynamical boundary control,, SIAM Journal on Control and Optimization, 36 (1998), 148.  doi: 10.1137/S0363012996300975.  Google Scholar

[17]

Q. Zhang, Stability analysis of an interactive system of wave equation and heat equation with memory,, Z. Angew. Math. Phys., 65 (2014), 905.  doi: 10.1007/s00033-013-0366-5.  Google Scholar

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM Journal on Control and Optimization, 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[2]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces,, Journal of Evolution Equations, 8 (2008), 765.  doi: 10.1007/s00028-008-0424-1.  Google Scholar

[3]

J. A. Burns, E. M. Cliff, Z. Liu and R. D. Spies, On coupled transversal and axial motions of two beams with a joint,, Journal of Mathematical Analysis and Applications, 339 (2008), 182.  doi: 10.1016/j.jmaa.2007.06.047.  Google Scholar

[4]

J. A. Burns, E. M. Cliff, Z. Liu and R. D. Spies, Polynomial stability of a joint-leg-beam system with local damping,, Mathematical and Computer Modelling, 46 (2007), 1236.  doi: 10.1016/j.mcm.2006.11.037.  Google Scholar

[5]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, Asymptotic Analysis, 46 (2006), 251.   Google Scholar

[6]

E. M. Cliff, B. Fulton, T. Herdman, Z. Liu and R. D. Spies, Well posedness and exponential stability of a thermoelastic joint-leg-beam system with Robin boundary conditions,, Mathematical and Computer Modelling, 49 (2009), 1097.  doi: 10.1016/j.mcm.2008.03.018.  Google Scholar

[7]

M. Fabrizio, C. Giorgi and V. Pata, A new approach to equations with memory,, Archive for Rational Mechanics and Analysis, 198 (2010), 189.  doi: 10.1007/s00205-010-0300-3.  Google Scholar

[8]

K. Guidanean and D. Lichodziejewski, An Inflatable Rigidizable Truss Structure Based on new Sub-Tg Polyurethane Composites,, AIAA Paper 02-1593, (2002), 02.  doi: 10.2514/6.2002-1593.  Google Scholar

[9]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Annals of Differential Equations, 1 (1985), 43.   Google Scholar

[10]

F. L. Huang, Strong asymptotic stability of linear dynamical systems in Banach spaces,, Journal of Differential Equations, 104 (1993), 307.  doi: 10.1006/jdeq.1993.1074.  Google Scholar

[11]

C. H. M. Jenkins, ed., Gossamer Spacecraft: Membrane and Inflatable Technology for Space Applications,, AIAA Progress in Aeronautics and Astronautics, (2001).   Google Scholar

[12]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures,, Birkhäuser, (1994).  doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[13]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity,, Zeitschrift für angewandte Mathematik und Physik, 53 (2002), 265.  doi: 10.1007/s00033-002-8155-6.  Google Scholar

[14]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[15]

J. Prüss, On the spectrum of $C_0-$semigroups,, Transactions of the American Mathematical Society, 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[16]

B. Rao, Stabilization of elastic plates with dynamical boundary control,, SIAM Journal on Control and Optimization, 36 (1998), 148.  doi: 10.1137/S0363012996300975.  Google Scholar

[17]

Q. Zhang, Stability analysis of an interactive system of wave equation and heat equation with memory,, Z. Angew. Math. Phys., 65 (2014), 905.  doi: 10.1007/s00033-013-0366-5.  Google Scholar

[1]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[2]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[3]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[4]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[5]

Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733

[6]

Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations & Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020

[7]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[8]

Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555

[9]

Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure & Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721

[10]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

[11]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[12]

Toyohiko Aiki. The position of the joint of shape memory alloy and bias springs. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 239-246. doi: 10.3934/dcdss.2011.4.239

[13]

Piotr Kościelniak, Marcin Mazur. On $C^0$ genericity of various shadowing properties. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 523-530. doi: 10.3934/dcds.2005.12.523

[14]

Kingshook Biswas. Maximal abelian torsion subgroups of Diff( C,0). Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 839-844. doi: 10.3934/dcds.2011.29.839

[15]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure & Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[16]

Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations & Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041

[17]

Yanfang Li, Zhuangyi Liu, Yang Wang. Weak stability of a laminated beam. Mathematical Control & Related Fields, 2018, 8 (3&4) : 789-808. doi: 10.3934/mcrf.2018035

[18]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[19]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[20]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]