June  2015, 5(2): 335-358. doi: 10.3934/mcrf.2015.5.335

Global controllability and stabilizability of Kawahara equation on a periodic domain

1. 

Department of Mathematics, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China

2. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Oh 45221

Received  January 2014 Revised  July 2014 Published  April 2015

In this paper we study controllability and stabilizability of a class of distributed parameter control system described by the Kawahara equation posed on a periodic domain $\mathbb{T}$ with internal control acting on a sub-domain $\omega $ of $\mathbb{T}$. Earlier in [42], aided by Bourgain smoothing property of the system, we showed that the system is locally exactly controllable and exponentially stabilizable. In this paper, helped further by certain properties of propagation of compactness and regularity in Bourgain spaces for the solutions of the associated linear system, we show that the system is globally exactly controllable and globally exponentially stabilizable.
Citation: Xiangqing Zhao, Bing-Yu Zhang. Global controllability and stabilizability of Kawahara equation on a periodic domain. Mathematical Control and Related Fields, 2015, 5 (2) : 335-358. doi: 10.3934/mcrf.2015.5.335
References:
[1]

L. A. Abramyan and Yu. A. Stepanyants, The structure of two-dimensional solitons in media with anomalously small dispersion, Soviet Phys. JETP, 61 (1985), 963-966.

[2]

J. L. Bona, S. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-Value problem for the Kortewege Vries Equation posed on a finite domain, Communications in Partial Differetial Equations, 28 (2003), 1391-1436. doi: 10.1081/PDE-120024373.

[3]

J. L. Bona, S. M. Sun and B.-Y. Zhang, Non-homogeneous boundary value problems for the Kortewege Vries and the Korteweg de Vries Burgers equations in aquarter plane, Ann. I. H. Poincaré-AN, 25 (2008), 1145-1185. doi: 10.1016/j.anihpc.2007.07.006.

[4]

J. P. Boyd, Weakly non-local solitons for capillary-gravity waves: Fifth degree Korteweg-de Vries equation, Phys. D, 48 (1991), 129-146. doi: 10.1016/0167-2789(91)90056-F.

[5]

J. Bourgain, Fourrier transform restriction phenomena for certain lattice subsets and applications to nonlinear evlution equations, Part I: The Schrödinger equation, Part II: The KdV equation, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.

[6]

E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim., 46 (2007), 877-899. doi: 10.1137/06065369X.

[7]

E. Cerpa and E. Crepeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain, Ann. I.H. Poincaré-AN, 26 (2009), 457-475. doi: 10.1016/j.anihpc.2007.11.003.

[8]

W. Chen and Z. Guo, Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation, Amer. J. Math., 114 (2011), 121-156. doi: 10.1007/s11854-011-0014-y.

[9]

P. Constantin and J. C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439. doi: 10.1090/S0894-0347-1988-0928265-0.

[10]

J. M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398.

[11]

S. B. Cui and S. P. Tao, Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Appl., 304 (2005), 683-702. doi: 10.1016/j.jmaa.2004.09.049.

[12]

S. B. Cui, D. G. Deng and S. P. Tao, Global existence of solutions for the Cauchy problem of the Kawahara equation with $L^2$ initial data, Acta Math. Sin., 22 (2006), 1457-1466. doi: 10.1007/s10114-005-0710-6.

[13]

B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Anna. Sci. Ec. Norm. Super., 36 (2003), 525-551. doi: 10.1016/S0012-9593(03)00021-1.

[14]

J. Gorsky and A. A. Himonas, Well-posedness of KdV with higher dispersion, Math. Comput. Simul., 80 (2009), 173-183. doi: 10.1016/j.matcom.2009.06.007.

[15]

A. Grünrock, New applications of the Fourier restriction norm method, Ph.D thesis, Universität Wuppertal, 2002.

[16]

H. Hasimoto, Water waves, Kagaku, 40 (1970), 401-408 [in Japanese].

[17]

H. Hirayama, Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential Equations, 19 (2012), 677-693. doi: 10.1007/s00030-011-0147-9.

[18]

J. K. Hunter and J. Scheurle, Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D, 32 (1988), 253-268. doi: 10.1016/0167-2789(88)90054-1.

[19]

Y. Hu, Discrete Fourier Restriction Phenomena Associated with Some Periodic Dispersive Wave Equations, Ph.D thesis, University of Illinois at Urbana-Champaign, 2012.

[20]

T. Kakutani and H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma, J. Phys. Soc. Japan, 26 (1969), 1305-1318. doi: 10.1143/JPSJ.26.1305.

[21]

V. I. Karpman and V. Yu. Belashov, Dynamics of two-dimensional soliton in weakly dispersive media, Phys. Lett. A, 154 1991, 131-139.

[22]

T. Kato, Low regularity well-posedness for the periodic Kawahara equation,, , (). 

[23]

T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), 260-264. doi: 10.1143/JPSJ.33.260.

[24]

C. Kenig, G. Ponce and L. Vega, A biliner estimate with applications to the KdV equations, J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.

[25]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443. doi: 10.1080/14786449508620739.

[26]

C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM-COCV, 16 (2010), 356-379. doi: 10.1051/cocv/2009001.

[27]

C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Communications in Partial Differential Equations, 35 (2010), 707-744. doi: 10.1080/03605300903585336.

[28]

J. F. Li and S. G. Shi, Local well-posedness for the dispersion generalized periodic KdV equation, J. Math. Anal. Appl., 379 (2011), 706-718. doi: 10.1016/j.jmaa.2011.01.026.

[29]

L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153. doi: 10.1016/j.jde.2008.11.004.

[30]

D. L. Russell, Computational study of the Korteweg-de Vries equation with localized control action, in Distributed Parameter Control Systems (eds. G. Chen, E. B. Lee, W. Littman and L. Markus), Lecture Notes in Pure and Appl. Math., 128, Dekker, New York, 1991, 195-203.

[31]

D. L. Russell and B.-Y. Zhang, Exact controllability and stabiability of the Korteweg-de Veies equation, Transaction of the American Mathematical Society, 348 (1996), 3643-3672. doi: 10.1090/S0002-9947-96-01672-8.

[32]

D. L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control and Optimization, 31 (1993), 659-676. doi: 10.1137/0331030.

[33]

P. N. da Silva, Unique Continuation for the Kawahara Equation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 463-473. doi: 10.5540/tema.2007.08.03.0463.

[34]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974), 500-508. doi: 10.1137/0312038.

[35]

T. Tao, Nonlinear Dispersive Equations, Local and Global Analysis, CBMS Regional Conference Series in Mathematics, Vol. 106., American Mathematical Society, Providence, RI, 2006.

[36]

L. Tartar, Nonlinear interpolation and regularity, J. Funct. Anal., 9 (1972), 469-489.

[37]

C. F. Vasconcellos and P. N. da Silva, Stabilization of the linear Kawahara equation with localized damping, Asymptotic Analysis, 58 (2008), 229-252.

[38]

C. F. Vasconcellos and P. N. da Silva, Stabilization of the Kawahara equation with a localized damping, ESAIM: COCV, 17 (2011), 102-116. doi: 10.1051/cocv/2009041.

[39]

H. Wang, S. B. Cui and D. G. Deng, Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices, Acta Math. Sin., 23 (2007), 1435-1446. doi: 10.1007/s10114-007-0959-z.

[40]

Y. Wu and Y. S. Li, The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity, Math. Meth. Appl. Sci., 33 (2010), 1647-1660. doi: 10.1002/mma.1273.

[41]

B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Cont. Optim., 37 (1999), 543-565. doi: 10.1137/S0363012997327501.

[42]

B.-Y. Zhang and X. Q. Zhao, Control and stabilization of the Kawahara equation on a periodic, Communications in Information and Systems, 12 (2012), 77-95. doi: 10.4310/CIS.2012.v12.n1.a4.

show all references

References:
[1]

L. A. Abramyan and Yu. A. Stepanyants, The structure of two-dimensional solitons in media with anomalously small dispersion, Soviet Phys. JETP, 61 (1985), 963-966.

[2]

J. L. Bona, S. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-Value problem for the Kortewege Vries Equation posed on a finite domain, Communications in Partial Differetial Equations, 28 (2003), 1391-1436. doi: 10.1081/PDE-120024373.

[3]

J. L. Bona, S. M. Sun and B.-Y. Zhang, Non-homogeneous boundary value problems for the Kortewege Vries and the Korteweg de Vries Burgers equations in aquarter plane, Ann. I. H. Poincaré-AN, 25 (2008), 1145-1185. doi: 10.1016/j.anihpc.2007.07.006.

[4]

J. P. Boyd, Weakly non-local solitons for capillary-gravity waves: Fifth degree Korteweg-de Vries equation, Phys. D, 48 (1991), 129-146. doi: 10.1016/0167-2789(91)90056-F.

[5]

J. Bourgain, Fourrier transform restriction phenomena for certain lattice subsets and applications to nonlinear evlution equations, Part I: The Schrödinger equation, Part II: The KdV equation, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.

[6]

E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim., 46 (2007), 877-899. doi: 10.1137/06065369X.

[7]

E. Cerpa and E. Crepeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain, Ann. I.H. Poincaré-AN, 26 (2009), 457-475. doi: 10.1016/j.anihpc.2007.11.003.

[8]

W. Chen and Z. Guo, Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation, Amer. J. Math., 114 (2011), 121-156. doi: 10.1007/s11854-011-0014-y.

[9]

P. Constantin and J. C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439. doi: 10.1090/S0894-0347-1988-0928265-0.

[10]

J. M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398.

[11]

S. B. Cui and S. P. Tao, Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Appl., 304 (2005), 683-702. doi: 10.1016/j.jmaa.2004.09.049.

[12]

S. B. Cui, D. G. Deng and S. P. Tao, Global existence of solutions for the Cauchy problem of the Kawahara equation with $L^2$ initial data, Acta Math. Sin., 22 (2006), 1457-1466. doi: 10.1007/s10114-005-0710-6.

[13]

B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Anna. Sci. Ec. Norm. Super., 36 (2003), 525-551. doi: 10.1016/S0012-9593(03)00021-1.

[14]

J. Gorsky and A. A. Himonas, Well-posedness of KdV with higher dispersion, Math. Comput. Simul., 80 (2009), 173-183. doi: 10.1016/j.matcom.2009.06.007.

[15]

A. Grünrock, New applications of the Fourier restriction norm method, Ph.D thesis, Universität Wuppertal, 2002.

[16]

H. Hasimoto, Water waves, Kagaku, 40 (1970), 401-408 [in Japanese].

[17]

H. Hirayama, Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential Equations, 19 (2012), 677-693. doi: 10.1007/s00030-011-0147-9.

[18]

J. K. Hunter and J. Scheurle, Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D, 32 (1988), 253-268. doi: 10.1016/0167-2789(88)90054-1.

[19]

Y. Hu, Discrete Fourier Restriction Phenomena Associated with Some Periodic Dispersive Wave Equations, Ph.D thesis, University of Illinois at Urbana-Champaign, 2012.

[20]

T. Kakutani and H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma, J. Phys. Soc. Japan, 26 (1969), 1305-1318. doi: 10.1143/JPSJ.26.1305.

[21]

V. I. Karpman and V. Yu. Belashov, Dynamics of two-dimensional soliton in weakly dispersive media, Phys. Lett. A, 154 1991, 131-139.

[22]

T. Kato, Low regularity well-posedness for the periodic Kawahara equation,, , (). 

[23]

T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), 260-264. doi: 10.1143/JPSJ.33.260.

[24]

C. Kenig, G. Ponce and L. Vega, A biliner estimate with applications to the KdV equations, J. Amer. Math. Soc., 9 (1996), 573-603. doi: 10.1090/S0894-0347-96-00200-7.

[25]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443. doi: 10.1080/14786449508620739.

[26]

C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM-COCV, 16 (2010), 356-379. doi: 10.1051/cocv/2009001.

[27]

C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Communications in Partial Differential Equations, 35 (2010), 707-744. doi: 10.1080/03605300903585336.

[28]

J. F. Li and S. G. Shi, Local well-posedness for the dispersion generalized periodic KdV equation, J. Math. Anal. Appl., 379 (2011), 706-718. doi: 10.1016/j.jmaa.2011.01.026.

[29]

L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153. doi: 10.1016/j.jde.2008.11.004.

[30]

D. L. Russell, Computational study of the Korteweg-de Vries equation with localized control action, in Distributed Parameter Control Systems (eds. G. Chen, E. B. Lee, W. Littman and L. Markus), Lecture Notes in Pure and Appl. Math., 128, Dekker, New York, 1991, 195-203.

[31]

D. L. Russell and B.-Y. Zhang, Exact controllability and stabiability of the Korteweg-de Veies equation, Transaction of the American Mathematical Society, 348 (1996), 3643-3672. doi: 10.1090/S0002-9947-96-01672-8.

[32]

D. L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control and Optimization, 31 (1993), 659-676. doi: 10.1137/0331030.

[33]

P. N. da Silva, Unique Continuation for the Kawahara Equation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 463-473. doi: 10.5540/tema.2007.08.03.0463.

[34]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974), 500-508. doi: 10.1137/0312038.

[35]

T. Tao, Nonlinear Dispersive Equations, Local and Global Analysis, CBMS Regional Conference Series in Mathematics, Vol. 106., American Mathematical Society, Providence, RI, 2006.

[36]

L. Tartar, Nonlinear interpolation and regularity, J. Funct. Anal., 9 (1972), 469-489.

[37]

C. F. Vasconcellos and P. N. da Silva, Stabilization of the linear Kawahara equation with localized damping, Asymptotic Analysis, 58 (2008), 229-252.

[38]

C. F. Vasconcellos and P. N. da Silva, Stabilization of the Kawahara equation with a localized damping, ESAIM: COCV, 17 (2011), 102-116. doi: 10.1051/cocv/2009041.

[39]

H. Wang, S. B. Cui and D. G. Deng, Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices, Acta Math. Sin., 23 (2007), 1435-1446. doi: 10.1007/s10114-007-0959-z.

[40]

Y. Wu and Y. S. Li, The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity, Math. Meth. Appl. Sci., 33 (2010), 1647-1660. doi: 10.1002/mma.1273.

[41]

B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Cont. Optim., 37 (1999), 543-565. doi: 10.1137/S0363012997327501.

[42]

B.-Y. Zhang and X. Q. Zhao, Control and stabilization of the Kawahara equation on a periodic, Communications in Information and Systems, 12 (2012), 77-95. doi: 10.4310/CIS.2012.v12.n1.a4.

[1]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[2]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[3]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[4]

Peng Gao. Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evolution Equations and Control Theory, 2020, 9 (1) : 181-191. doi: 10.3934/eect.2020002

[5]

Guenbo Hwang, Byungsoo Moon. Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion. Electronic Research Archive, 2020, 28 (1) : 15-25. doi: 10.3934/era.2020002

[6]

Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52.

[7]

Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225

[8]

Cui Chen, Jiahui Hong, Kai Zhao. Global propagation of singularities for discounted Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1949-1970. doi: 10.3934/dcds.2021179

[9]

Emmanuel Hebey and Frederic Robert. Compactness and global estimates for the geometric Paneitz equation in high dimensions. Electronic Research Announcements, 2004, 10: 135-141.

[10]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[11]

Hua Chen, Wei-Xi Li, Chao-Jiang Xu. Propagation of Gevrey regularity for solutions of Landau equations. Kinetic and Related Models, 2008, 1 (3) : 355-368. doi: 10.3934/krm.2008.1.355

[12]

Lorenzo Brasco, Marco Squassina, Yang Yang. Global compactness results for nonlocal problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 391-424. doi: 10.3934/dcdss.2018022

[13]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial and Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[14]

C.B. Muratov. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 867-892. doi: 10.3934/dcdsb.2004.4.867

[15]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[16]

Chaker Jammazi, Souhila Loucif. On the global controllability of the 1-D Boussinesq equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1499-1523. doi: 10.3934/dcdss.2022096

[17]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control and Related Fields, 2022, 12 (1) : 1-16. doi: 10.3934/mcrf.2020055

[18]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[19]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[20]

Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov. A note on the replicator equation with explicit space and global regulation. Mathematical Biosciences & Engineering, 2011, 8 (3) : 659-676. doi: 10.3934/mbe.2011.8.659

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]