September  2015, 5(3): 501-516. doi: 10.3934/mcrf.2015.5.501

Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs

1. 

School of Mathematics and Statistics, Shandong University, Weihai, Weihai, 264209, China, China

Received  February 2014 Revised  February 2015 Published  July 2015

In this paper, we consider a new type of reflected mean-field backward stochastic differential equations (reflected MFBSDEs, for short), namely, controlled reflected MFBSDEs involving their value function. The existence and the uniqueness of the solution of such equation are proved by using an approximation method. We also adapt this method to give a comparison theorem for our reflected MFBSDEs. The related dynamic programming principle is obtained by extending the approach of stochastic backward semigroups introduced by Peng [11] in 1997. Finally, we show that the value function which our reflected MFBSDE is coupled with is the unique viscosity solution of the related nonlocal parabolic partial differential equation with obstacle.
Citation: Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control and Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501
References:
[1]

G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations, Stoch. Stoch. Rep., 60 (1997), 57-83. doi: 10.1080/17442509708834099.

[2]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton- Jacobi-Bellman-Isaacs equations, SIAM. J. Control. Optim., 47 (2008), 444-475. doi: 10.1137/060671954.

[3]

R. Buckdahn and J. Li, Stochastic differential games with reflection and related obstacle problems for Isaacs equations, Acta Math. Appl. Sin.-Enql. Ser., 27 (2011), 647-678. doi: 10.1007/s10255-011-0068-8.

[4]

R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations. A limit approach, Ann. Probab., 37 (2009), 1524-1565. doi: 10.1214/08-AOP442.

[5]

R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Proc. App., 119 (2009), 3133-3154. doi: 10.1016/j.spa.2009.05.002.

[6]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

T. Hao and J. Li, Backward stochastic differential equations coupled with value function and related optimal control problems, Abstract Appl. Anal., 2014 (2014), Art. ID 262713, 17 pp. doi: 10.1155/2014/262713.

[8]

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's, Ann. Probab., 25 (1997), 702-737. doi: 10.1214/aop/1024404416.

[9]

J. Li, Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs, J. Math. Anal. Appl., 413 (2014), 47-68. doi: 10.1016/j.jmaa.2013.11.028.

[10]

Z. Li and J. Luo, Mean-field reflected backward stochastic differential equations, Stat. Probab. Lett., 82 (2012), 1961-1968. doi: 10.1016/j.spl.2012.06.018.

[11]

J. Yan, S. Peng and S. Fang, BSDE and stochastic optimizations, in Topics in Stochastic Analysis (eds. L. Wu), Science Press, 1997 (In Chinese).

show all references

References:
[1]

G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations, Stoch. Stoch. Rep., 60 (1997), 57-83. doi: 10.1080/17442509708834099.

[2]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton- Jacobi-Bellman-Isaacs equations, SIAM. J. Control. Optim., 47 (2008), 444-475. doi: 10.1137/060671954.

[3]

R. Buckdahn and J. Li, Stochastic differential games with reflection and related obstacle problems for Isaacs equations, Acta Math. Appl. Sin.-Enql. Ser., 27 (2011), 647-678. doi: 10.1007/s10255-011-0068-8.

[4]

R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations. A limit approach, Ann. Probab., 37 (2009), 1524-1565. doi: 10.1214/08-AOP442.

[5]

R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Proc. App., 119 (2009), 3133-3154. doi: 10.1016/j.spa.2009.05.002.

[6]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

T. Hao and J. Li, Backward stochastic differential equations coupled with value function and related optimal control problems, Abstract Appl. Anal., 2014 (2014), Art. ID 262713, 17 pp. doi: 10.1155/2014/262713.

[8]

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's, Ann. Probab., 25 (1997), 702-737. doi: 10.1214/aop/1024404416.

[9]

J. Li, Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs, J. Math. Anal. Appl., 413 (2014), 47-68. doi: 10.1016/j.jmaa.2013.11.028.

[10]

Z. Li and J. Luo, Mean-field reflected backward stochastic differential equations, Stat. Probab. Lett., 82 (2012), 1961-1968. doi: 10.1016/j.spl.2012.06.018.

[11]

J. Yan, S. Peng and S. Fang, BSDE and stochastic optimizations, in Topics in Stochastic Analysis (eds. L. Wu), Science Press, 1997 (In Chinese).

[1]

Yinggu Chen, Said HamadÈne, Tingshu Mu. Mean-field doubly reflected backward stochastic differential equations. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022012

[2]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[3]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[4]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[5]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[6]

Monia Karouf. Reflected solutions of backward doubly SDEs driven by Brownian motion and Poisson random measure. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5571-5601. doi: 10.3934/dcds.2019245

[7]

Amarjit Budhiraja, John Fricks. Molecular motors, Brownian ratchets, and reflected diffusions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 711-734. doi: 10.3934/dcdsb.2006.6.711

[8]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[9]

Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287

[10]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[11]

Michael Herty, Torsten Trimborn, Giuseppe Visconti. Mean-field and kinetic descriptions of neural differential equations. Foundations of Data Science, 2022, 4 (2) : 271-298. doi: 10.3934/fods.2022007

[12]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[13]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[14]

Tian Chen, Zhen Wu. A general maximum principle for partially observed mean-field stochastic system with random jumps in progressive structure. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022012

[15]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

[16]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control and Related Fields, 2022, 12 (2) : 371-404. doi: 10.3934/mcrf.2021026

[17]

Imen Hassairi. Existence and uniqueness for $\mathbb{D}$-solutions of reflected BSDEs with two barriers without Mokobodzki's condition. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1139-1156. doi: 10.3934/cpaa.2016.15.1139

[18]

Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070

[19]

Jianhui Huang, Shujun Wang, Zhen Wu. Backward-forward linear-quadratic mean-field games with major and minor agents. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 8-. doi: 10.1186/s41546-016-0009-9

[20]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (169)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]