• Previous Article
    Transposition method for backward stochastic evolution equations revisited, and its application
  • MCRF Home
  • This Issue
  • Next Article
    Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs
September  2015, 5(3): 517-527. doi: 10.3934/mcrf.2015.5.517

Optimal blowup/quenching time for controlled autonomous ordinary differential equations

1. 

School of Mathematical Sciences and LMNS, Fudan University, Shanghai 200433

2. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  July 2014 Revised  November 2014 Published  July 2015

Blowup/Quenching time optimal control problems for controlled autonomous ordinary differential equations are considered. The main results are maximum principles for these time optimal control problems, including the transversality conditions.
Citation: Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517
References:
[1]

E. N. Barron and W. Liu, Optimal control of the blowup time,, SIAM J. Control Optim., 34 (1996), 102.  doi: 10.1137/S0363012993245021.  Google Scholar

[2]

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations,, Comm. Pure Appl. Math., 16 (1963), 305.  doi: 10.1002/cpa.3160160307.  Google Scholar

[3]

H. Kawarada, On solutions of initial-boundary problem for $u_t=u_{x x}+1/(1-u)$,, Publ. Res. Inst. Math. Sci., 10 (): 729.  doi: 10.2977/prims/1195191889.  Google Scholar

[4]

P. Lin, Quenching time optimal control for some ordinary differential equations,, J. Appl. Math., (2014).  doi: 10.1155/2014/127809.  Google Scholar

[5]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations,, SIAM J. Control Optim., 49 (2011), 73.  doi: 10.1137/090764232.  Google Scholar

[6]

H. Lou and W. Wang, Optimal blowup time for controlled ordinary differential equations,, ESAIM: COCV, 21 (2015), 815.   Google Scholar

[7]

H. Lou, J. Wen and Y. Xu, Time optimal control problems for some non-smooth systems,, Math. Control Relat. Fields, 4 (2014), 289.  doi: 10.3934/mcrf.2014.4.289.  Google Scholar

[8]

R. Vinter, Optimal Control,, Birkhäuser, (2000).   Google Scholar

[9]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

[10]

K. Yosida, Functional Analysis,, Springer-Verlag, (1980).   Google Scholar

show all references

References:
[1]

E. N. Barron and W. Liu, Optimal control of the blowup time,, SIAM J. Control Optim., 34 (1996), 102.  doi: 10.1137/S0363012993245021.  Google Scholar

[2]

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations,, Comm. Pure Appl. Math., 16 (1963), 305.  doi: 10.1002/cpa.3160160307.  Google Scholar

[3]

H. Kawarada, On solutions of initial-boundary problem for $u_t=u_{x x}+1/(1-u)$,, Publ. Res. Inst. Math. Sci., 10 (): 729.  doi: 10.2977/prims/1195191889.  Google Scholar

[4]

P. Lin, Quenching time optimal control for some ordinary differential equations,, J. Appl. Math., (2014).  doi: 10.1155/2014/127809.  Google Scholar

[5]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations,, SIAM J. Control Optim., 49 (2011), 73.  doi: 10.1137/090764232.  Google Scholar

[6]

H. Lou and W. Wang, Optimal blowup time for controlled ordinary differential equations,, ESAIM: COCV, 21 (2015), 815.   Google Scholar

[7]

H. Lou, J. Wen and Y. Xu, Time optimal control problems for some non-smooth systems,, Math. Control Relat. Fields, 4 (2014), 289.  doi: 10.3934/mcrf.2014.4.289.  Google Scholar

[8]

R. Vinter, Optimal Control,, Birkhäuser, (2000).   Google Scholar

[9]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

[10]

K. Yosida, Functional Analysis,, Springer-Verlag, (1980).   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[4]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[5]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[6]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[9]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[10]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[11]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[12]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[13]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[16]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[17]

Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024

[18]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[19]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[20]

Gaojun Luo, Xiwang Cao. Two classes of near-optimal codebooks with respect to the Welch bound. Advances in Mathematics of Communications, 2021, 15 (2) : 279-289. doi: 10.3934/amc.2020066

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]