September  2015, 5(3): 557-583. doi: 10.3934/mcrf.2015.5.557

Dynamic equilibrium limit order book model and optimal execution problem

1. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089

2. 

Institutional Equity Division, Morgan Stanley, New York, NY 10036, United States, United States

Received  January 2014 Revised  October 2014 Published  July 2015

In this paper we propose a dynamic model of Limit Order Book (LOB). The main feature of our model is that the shape of the LOB is determined endogenously by an expected utility function via a competitive equilibrium argument. Assuming zero resilience, the resulting equilibrium density of the LOB is random, nonlinear, and time inhomogeneous. Consequently, the liquidity cost can be defined dynamically in a natural way.
    We next study an optimal execution problem in our model. We verify that the value function satisfies the Dynamic Programming Principle, and is a viscosity solution to the corresponding Hamilton-Jacobi-Bellman equation which is in the form of an integro-partial-differential quasi-variational inequality. We also prove the existence and analyze the structure of the optimal strategy via a verification theorem argument, assuming that the PDE has a classical solution.
Citation: Jin Ma, Xinyang Wang, Jianfeng Zhang. Dynamic equilibrium limit order book model and optimal execution problem. Mathematical Control & Related Fields, 2015, 5 (3) : 557-583. doi: 10.3934/mcrf.2015.5.557
References:
[1]

A. Alfonsi, A. Fruth and A. Schied, Constrained portfolio liquidation in a limit order book model,, Advances in mathematics of finance, 83 (2008), 9.  doi: 10.4064/bc83-0-1.  Google Scholar

[2]

A. Alfonsi, A. Fruth and A. Schied, Optimal execution strategies in limit order books with general shape functions,, Quant. Finance, 10 (2010), 143.  doi: 10.1080/14697680802595700.  Google Scholar

[3]

A. Alfonsi and A. Schied, Optimal execution and absence of price manipulations in limit order book models,, SIAM J. Financial Math., 1 (2010), 490.  doi: 10.1137/090762786.  Google Scholar

[4]

A. Alfonsi, A. Schied and A. Slynko, Order book resilience, price manipulation, and the positive portfolio problem,, SIAM J. Finan. Math., 3 (2012), 511.  doi: 10.1137/110822098.  Google Scholar

[5]

M. Avellaneda and S. Stoikov, High-frequency trading in a limit order book,, Quantitative Finance, 8 (2008), 217.  doi: 10.1080/14697680701381228.  Google Scholar

[6]

E. Bayraktar and M. Ludkovski, Optimal trade execution in illiquid markets,, Mathematical Finance, 21 (2011), 681.  doi: 10.1111/j.1467-9965.2010.00446.x.  Google Scholar

[7]

T. Bielecki, M. Jeanblanc and M. Rutkowski, Hedging of defaultable claims,, Paris-Princeton Lectures on Mathematical Finance 2003, 1847 (2004), 1.  doi: 10.1007/978-3-540-44468-8_1.  Google Scholar

[8]

U. Cetin, R. A. Jarrow and P. Protter, Liquidity risk and arbitrage pricing theory,, Finance and Stochastics, 8 (2004), 311.  doi: 10.1007/s00780-004-0123-x.  Google Scholar

[9]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (NS), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[10]

I. Ekren, N. Touzi and J. Zhang, Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs: Part I,, Annals of Probability, ().   Google Scholar

[11]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Springer-Verlag, (2006).   Google Scholar

[12]

T. Foucault, O. Kadan and E. Kandel, Limit Order Book as a Market for Liquidity,, Review of Financial Studies, 18 (2005), 1171.   Google Scholar

[13]

J. Gatheral, A. Schied and A. Slynko, Transient linear price impact and Fredholm integral equations,, Mathematical Finance, 22 (2012), 445.  doi: 10.1111/j.1467-9965.2011.00478.x.  Google Scholar

[14]

P. Handa and R. A. Schwartz, Limit order trading,, Journal of Finance, 51 (1996), 1835.   Google Scholar

[15]

B. Hollifield, R. A. Miller and P. Sandas, Empirical analysis of limit order markets,, Review of Economic Studies, 71 (2004), 1027.  doi: 10.1111/0034-6527.00313.  Google Scholar

[16]

A. Obizhaeva and J. Wang, Optimal trading strategy and supply/demand dynamics,, Journal of Financial Markets, 16 (2013), 1.   Google Scholar

[17]

I. Rosu, A dynamic model of the limit order book,, The Review of Financial Studies, 22 (2009), 4601.   Google Scholar

[18]

S. Predoiu, G. Shaikhet and S. E. Shreve, Optimal execution in a general one-sided limit-order book,, SIAM J. Finan. Math., 2 (2011), 183.  doi: 10.1137/10078534X.  Google Scholar

[19]

M. Soner, N. Touzi and J. Zhang, Dual formulation of the second order target problems,, Annals of Applied Probability, 23 (2013), 308.  doi: 10.1214/12-AAP844.  Google Scholar

show all references

References:
[1]

A. Alfonsi, A. Fruth and A. Schied, Constrained portfolio liquidation in a limit order book model,, Advances in mathematics of finance, 83 (2008), 9.  doi: 10.4064/bc83-0-1.  Google Scholar

[2]

A. Alfonsi, A. Fruth and A. Schied, Optimal execution strategies in limit order books with general shape functions,, Quant. Finance, 10 (2010), 143.  doi: 10.1080/14697680802595700.  Google Scholar

[3]

A. Alfonsi and A. Schied, Optimal execution and absence of price manipulations in limit order book models,, SIAM J. Financial Math., 1 (2010), 490.  doi: 10.1137/090762786.  Google Scholar

[4]

A. Alfonsi, A. Schied and A. Slynko, Order book resilience, price manipulation, and the positive portfolio problem,, SIAM J. Finan. Math., 3 (2012), 511.  doi: 10.1137/110822098.  Google Scholar

[5]

M. Avellaneda and S. Stoikov, High-frequency trading in a limit order book,, Quantitative Finance, 8 (2008), 217.  doi: 10.1080/14697680701381228.  Google Scholar

[6]

E. Bayraktar and M. Ludkovski, Optimal trade execution in illiquid markets,, Mathematical Finance, 21 (2011), 681.  doi: 10.1111/j.1467-9965.2010.00446.x.  Google Scholar

[7]

T. Bielecki, M. Jeanblanc and M. Rutkowski, Hedging of defaultable claims,, Paris-Princeton Lectures on Mathematical Finance 2003, 1847 (2004), 1.  doi: 10.1007/978-3-540-44468-8_1.  Google Scholar

[8]

U. Cetin, R. A. Jarrow and P. Protter, Liquidity risk and arbitrage pricing theory,, Finance and Stochastics, 8 (2004), 311.  doi: 10.1007/s00780-004-0123-x.  Google Scholar

[9]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (NS), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[10]

I. Ekren, N. Touzi and J. Zhang, Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs: Part I,, Annals of Probability, ().   Google Scholar

[11]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Springer-Verlag, (2006).   Google Scholar

[12]

T. Foucault, O. Kadan and E. Kandel, Limit Order Book as a Market for Liquidity,, Review of Financial Studies, 18 (2005), 1171.   Google Scholar

[13]

J. Gatheral, A. Schied and A. Slynko, Transient linear price impact and Fredholm integral equations,, Mathematical Finance, 22 (2012), 445.  doi: 10.1111/j.1467-9965.2011.00478.x.  Google Scholar

[14]

P. Handa and R. A. Schwartz, Limit order trading,, Journal of Finance, 51 (1996), 1835.   Google Scholar

[15]

B. Hollifield, R. A. Miller and P. Sandas, Empirical analysis of limit order markets,, Review of Economic Studies, 71 (2004), 1027.  doi: 10.1111/0034-6527.00313.  Google Scholar

[16]

A. Obizhaeva and J. Wang, Optimal trading strategy and supply/demand dynamics,, Journal of Financial Markets, 16 (2013), 1.   Google Scholar

[17]

I. Rosu, A dynamic model of the limit order book,, The Review of Financial Studies, 22 (2009), 4601.   Google Scholar

[18]

S. Predoiu, G. Shaikhet and S. E. Shreve, Optimal execution in a general one-sided limit-order book,, SIAM J. Finan. Math., 2 (2011), 183.  doi: 10.1137/10078534X.  Google Scholar

[19]

M. Soner, N. Touzi and J. Zhang, Dual formulation of the second order target problems,, Annals of Applied Probability, 23 (2013), 308.  doi: 10.1214/12-AAP844.  Google Scholar

[1]

Alberto Bressan, Marco Mazzola, Hongxu Wei. A dynamic model of the limit order book. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019206

[2]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[3]

Ka Wo Lau, Yue Kuen Kwok. Optimal execution strategy of liquidation. Journal of Industrial & Management Optimization, 2006, 2 (2) : 135-144. doi: 10.3934/jimo.2006.2.135

[4]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[5]

Guibin Lu, Qiying Hu, Youying Zhou, Wuyi Yue. Optimal execution strategy with an endogenously determined sales period. Journal of Industrial & Management Optimization, 2005, 1 (3) : 289-304. doi: 10.3934/jimo.2005.1.289

[6]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[7]

Ryan Loxton, Qun Lin. Optimal fleet composition via dynamic programming and golden section search. Journal of Industrial & Management Optimization, 2011, 7 (4) : 875-890. doi: 10.3934/jimo.2011.7.875

[8]

Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1055-1083. doi: 10.3934/jimo.2017090

[9]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[10]

Haiying Liu, Wenjie Bi, Kok Lay Teo, Naxing Liu. Dynamic optimal decision making for manufacturers with limited attention based on sparse dynamic programming. Journal of Industrial & Management Optimization, 2019, 15 (2) : 445-464. doi: 10.3934/jimo.2018050

[11]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[12]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018188

[13]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[14]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[15]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[16]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics & Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[17]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial & Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[18]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[19]

Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439

[20]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]