Advanced Search
Article Contents
Article Contents

Dynamic equilibrium limit order book model and optimal execution problem

Abstract Related Papers Cited by
  • In this paper we propose a dynamic model of Limit Order Book (LOB). The main feature of our model is that the shape of the LOB is determined endogenously by an expected utility function via a competitive equilibrium argument. Assuming zero resilience, the resulting equilibrium density of the LOB is random, nonlinear, and time inhomogeneous. Consequently, the liquidity cost can be defined dynamically in a natural way.
        We next study an optimal execution problem in our model. We verify that the value function satisfies the Dynamic Programming Principle, and is a viscosity solution to the corresponding Hamilton-Jacobi-Bellman equation which is in the form of an integro-partial-differential quasi-variational inequality. We also prove the existence and analyze the structure of the optimal strategy via a verification theorem argument, assuming that the PDE has a classical solution.
    Mathematics Subject Classification: Primary: 91B51, 91B70; Secondary: 93E03, 93E20.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Alfonsi, A. Fruth and A. Schied, Constrained portfolio liquidation in a limit order book model, Advances in mathematics of finance, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 83 (2008), 9-25.doi: 10.4064/bc83-0-1.


    A. Alfonsi, A. Fruth and A. Schied, Optimal execution strategies in limit order books with general shape functions, Quant. Finance, 10 (2010), 143-157.doi: 10.1080/14697680802595700.


    A. Alfonsi and A. Schied, Optimal execution and absence of price manipulations in limit order book models, SIAM J. Financial Math., 1 (2010), 490-522.doi: 10.1137/090762786.


    A. Alfonsi, A. Schied and A. Slynko, Order book resilience, price manipulation, and the positive portfolio problem, SIAM J. Finan. Math., 3 (2012), 511-533.doi: 10.1137/110822098.


    M. Avellaneda and S. Stoikov, High-frequency trading in a limit order book, Quantitative Finance, 8 (2008), 217-224.doi: 10.1080/14697680701381228.


    E. Bayraktar and M. Ludkovski, Optimal trade execution in illiquid markets, Mathematical Finance, 21 (2011), 681-701.doi: 10.1111/j.1467-9965.2010.00446.x.


    T. Bielecki, M. Jeanblanc and M. Rutkowski, Hedging of defaultable claims, Paris-Princeton Lectures on Mathematical Finance 2003, Lecture Notes in Math., Springer, Berlin, 1847 (2004), 1-132.doi: 10.1007/978-3-540-44468-8_1.


    U. Cetin, R. A. Jarrow and P. Protter, Liquidity risk and arbitrage pricing theory, Finance and Stochastics, 8 (2004), 311-341.doi: 10.1007/s00780-004-0123-x.


    M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (NS), 27 (1992), 1-67.doi: 10.1090/S0273-0979-1992-00266-5.


    I. Ekren, N. Touzi and J. Zhang, Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent PDEs: Part I, Annals of Probability, to appear, arXiv:1210.0006.


    W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 2006.


    T. Foucault, O. Kadan and E. Kandel, Limit Order Book as a Market for Liquidity, Review of Financial Studies, 18 (2005), 1171-1217.


    J. Gatheral, A. Schied and A. Slynko, Transient linear price impact and Fredholm integral equations, Mathematical Finance, 22 (2012), 445-474.doi: 10.1111/j.1467-9965.2011.00478.x.


    P. Handa and R. A. Schwartz, Limit order trading, Journal of Finance, 51 (1996), 1835-1861.


    B. Hollifield, R. A. Miller and P. Sandas, Empirical analysis of limit order markets, Review of Economic Studies, 71 (2004), 1027-1063.doi: 10.1111/0034-6527.00313.


    A. Obizhaeva and J. Wang, Optimal trading strategy and supply/demand dynamics, Journal of Financial Markets, 16 (2013), 1-32.


    I. Rosu, A dynamic model of the limit order book, The Review of Financial Studies, 22 (2009), 4601-4641.


    S. Predoiu, G. Shaikhet and S. E. Shreve, Optimal execution in a general one-sided limit-order book, SIAM J. Finan. Math., 2 (2011), 183-212.doi: 10.1137/10078534X.


    M. Soner, N. Touzi and J. Zhang, Dual formulation of the second order target problems, Annals of Applied Probability, 23 (2013), 308-347.doi: 10.1214/12-AAP844.

  • 加载中

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint