• Previous Article
    Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation
  • MCRF Home
  • This Issue
  • Next Article
    Generalized homogeneous systems with applications to nonlinear control: A survey
September  2015, 5(3): 613-649. doi: 10.3934/mcrf.2015.5.613

Optimal control problems of forward-backward stochastic Volterra integral equations

1. 

Institute for Financial Studies and School of Mathematics, Shandong University, Jinan, Shandong 250100

2. 

School of Mathematics, Sichuan University, Chengdu 610065, China

3. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816

Received  April 2014 Revised  March 2015 Published  July 2015

Optimal control problems of forward-backward stochastic Volterra integral equations (FBSVIEs, in short) are formulated and studied. A general duality principle is established for linear backward stochastic integral equation and linear stochastic Fredholm-Volterra integral equation with mean-field. With the help of such a duality principle, together with some other new delicate and subtle skills, Pontryagin type maximum principles are proved for two optimal control problems of FBSVIEs.
Citation: Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control & Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613
References:
[1]

G. Ainslie, Picoeconomics: The Strategic Interaction of Successive Motivational States within the Person,, Cambridge Univ. Press 1992., (1992).   Google Scholar

[2]

D. Duffie and L. G. Epstein, Stochastic differential utility,, Econometrica, 60 (1992), 353.  doi: 10.2307/2951600.  Google Scholar

[3]

D. Duffie and C. F. Huang, Stochastic Production-Exchange Equilibria,, Reserach paper No.974, (1986).   Google Scholar

[4]

M. I. Kamien and E. Muller, Optimal control with integral state equations,, Rev. Econ. Stud., 43 (1976), 469.  doi: 10.2307/2297225.  Google Scholar

[5]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Springer, (1988).  doi: 10.1007/978-1-4684-0302-2_2.  Google Scholar

[6]

J. Lin, Adapted solution of backward stochastic nonlinear Volterra integral equation,, Stoch. Anal. Appl., 20 (2002), 165.  doi: 10.1081/SAP-120002426.  Google Scholar

[7]

J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications,, Springer-Verlag, (1999).   Google Scholar

[8]

E. Pardoux and P. Protter, Stochastic Volterra equations with anticipating coefficients,, Ann. Probab., 18 (1990), 1635.  doi: 10.1214/aop/1176990638.  Google Scholar

[9]

S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.  doi: 10.1137/0328054.  Google Scholar

[10]

S. Peng, Backward stochastic differential equations and application to optimal control,, Appl. Math. Optim., 27 (1993), 125.  doi: 10.1007/BF01195978.  Google Scholar

[11]

Y. Shi and T. Wang, Solvability of general backward stochastic Volterra integral equations,, J. Korean Math. Soc., 49 (2012), 1301.  doi: 10.4134/JKMS.2012.49.6.1301.  Google Scholar

[12]

Y. Shi, T. Wang and J. Yong, Mean-field backward stochastic Volterra integral equations,, Discrete. Contin. Dyn. Syst. Ser. B, 18 (2013), 1929.  doi: 10.3934/dcdsb.2013.18.1929.  Google Scholar

[13]

T. Wang and Y. Shi, Symmetrical solutions of backward stochastic Volterra integral equations and applications,, Discrete Contin. Dyn. Syst. Ser. B., 14 (2010), 251.  doi: 10.3934/dcdsb.2010.14.251.  Google Scholar

[14]

T. Wang and J. Yong, Comparison theorems for backward stochastic Volterra integral equations,, Stoch. Process Appl., 125 (2015), 1756.  doi: 10.1016/j.spa.2014.11.013.  Google Scholar

[15]

Z. Wang and X. Zhang, Non-Lipschitz backward stochastic volterra type equations with jumps,, Stoch. Dyn., 7 (2007), 479.  doi: 10.1142/S0219493707002128.  Google Scholar

[16]

J. Yong, Backward stochastic Volterra integral equations and some related problems,, Stoch. Process Appl., 116 (2006), 779.  doi: 10.1016/j.spa.2006.01.005.  Google Scholar

[17]

J. Yong, Continuous-time dynamic risk measures by backward stochastic Volterra integral equations,, Appl. Anal., 86 (2007), 1429.  doi: 10.1080/00036810701697328.  Google Scholar

[18]

J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equation,, Probab. Theory Relat. Fields, 142 (2008), 21.  doi: 10.1007/s00440-007-0098-6.  Google Scholar

[19]

J. Yong and X. Y. Zhou, Stochstic Control: Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

show all references

References:
[1]

G. Ainslie, Picoeconomics: The Strategic Interaction of Successive Motivational States within the Person,, Cambridge Univ. Press 1992., (1992).   Google Scholar

[2]

D. Duffie and L. G. Epstein, Stochastic differential utility,, Econometrica, 60 (1992), 353.  doi: 10.2307/2951600.  Google Scholar

[3]

D. Duffie and C. F. Huang, Stochastic Production-Exchange Equilibria,, Reserach paper No.974, (1986).   Google Scholar

[4]

M. I. Kamien and E. Muller, Optimal control with integral state equations,, Rev. Econ. Stud., 43 (1976), 469.  doi: 10.2307/2297225.  Google Scholar

[5]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Springer, (1988).  doi: 10.1007/978-1-4684-0302-2_2.  Google Scholar

[6]

J. Lin, Adapted solution of backward stochastic nonlinear Volterra integral equation,, Stoch. Anal. Appl., 20 (2002), 165.  doi: 10.1081/SAP-120002426.  Google Scholar

[7]

J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications,, Springer-Verlag, (1999).   Google Scholar

[8]

E. Pardoux and P. Protter, Stochastic Volterra equations with anticipating coefficients,, Ann. Probab., 18 (1990), 1635.  doi: 10.1214/aop/1176990638.  Google Scholar

[9]

S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.  doi: 10.1137/0328054.  Google Scholar

[10]

S. Peng, Backward stochastic differential equations and application to optimal control,, Appl. Math. Optim., 27 (1993), 125.  doi: 10.1007/BF01195978.  Google Scholar

[11]

Y. Shi and T. Wang, Solvability of general backward stochastic Volterra integral equations,, J. Korean Math. Soc., 49 (2012), 1301.  doi: 10.4134/JKMS.2012.49.6.1301.  Google Scholar

[12]

Y. Shi, T. Wang and J. Yong, Mean-field backward stochastic Volterra integral equations,, Discrete. Contin. Dyn. Syst. Ser. B, 18 (2013), 1929.  doi: 10.3934/dcdsb.2013.18.1929.  Google Scholar

[13]

T. Wang and Y. Shi, Symmetrical solutions of backward stochastic Volterra integral equations and applications,, Discrete Contin. Dyn. Syst. Ser. B., 14 (2010), 251.  doi: 10.3934/dcdsb.2010.14.251.  Google Scholar

[14]

T. Wang and J. Yong, Comparison theorems for backward stochastic Volterra integral equations,, Stoch. Process Appl., 125 (2015), 1756.  doi: 10.1016/j.spa.2014.11.013.  Google Scholar

[15]

Z. Wang and X. Zhang, Non-Lipschitz backward stochastic volterra type equations with jumps,, Stoch. Dyn., 7 (2007), 479.  doi: 10.1142/S0219493707002128.  Google Scholar

[16]

J. Yong, Backward stochastic Volterra integral equations and some related problems,, Stoch. Process Appl., 116 (2006), 779.  doi: 10.1016/j.spa.2006.01.005.  Google Scholar

[17]

J. Yong, Continuous-time dynamic risk measures by backward stochastic Volterra integral equations,, Appl. Anal., 86 (2007), 1429.  doi: 10.1080/00036810701697328.  Google Scholar

[18]

J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equation,, Probab. Theory Relat. Fields, 142 (2008), 21.  doi: 10.1007/s00440-007-0098-6.  Google Scholar

[19]

J. Yong and X. Y. Zhou, Stochstic Control: Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[18]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]