Citation: |
[1] |
T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problem, work in progress. |
[2] |
T. Björk, A. Murgoci and X. Y. Zhou, Mean variance portfolio optimization with state dependent risk aversion, Math. Finance, 24 (2014), 1-24.doi: 10.1111/j.1467-9965.2011.00515.x. |
[3] |
I. Ekeland and T. Pirvu, Investment and consumption without commitment, Math. Finan. Econ., 2 (2008), 57-86.doi: 10.1007/s11579-008-0014-6. |
[4] |
I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent, Math. Finan. Econ., 4 (2010), 29-55.doi: 10.1007/s11579-010-0034-x. |
[5] |
I. Ekeland, O. Mbodji and T. Pirvu, Time-consistent portfolio management, SIAM J. Financial Math., 3 (2012), 1-32.doi: 10.1137/100810034. |
[6] |
S. Goldman, Consistent plans, Review of Economic Studies, 47 (1980), 533-537.doi: 10.2307/2297304. |
[7] |
Y. Hu, H. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548-1572.doi: 10.1137/110853960. |
[8] |
J. Ma and J. M. Yong, On linear, degenerate backward stochastic partial differential equations, Probab. Theory Related Fields, 113 (1999), 135-170.doi: 10.1007/s004400050205. |
[9] |
J. Ma, H. Yin and J. F. Zhang, On non-Markovian forward-backward SDEs and backward stochastic PDEs, Stochastic Processes and their Applications, 122 (2012), 3980-4004.doi: 10.1016/j.spa.2012.08.002. |
[10] |
J. Ma, Z. Wu, D. T. Zhang and J. F. Zhang, On wellposedness of forward-backward SDEs-a unified approach, Ann. Appl. Probab., 25(2015), 2168-2214. |
[11] |
I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and David Hume, History of Political Economy, 35 (2003), 241-268.doi: 10.1215/00182702-35-2-241. |
[12] |
E. Pardoux, Equations Aux Derivées Partielles Stochastiques Non Linéaires Monotones, Thèse d'Etat a l'Université Paris Sud, Paris, FR, 1975. |
[13] |
B. Peleg and M. Yaari, On the existence of a consistent course of action when tastes are changing, Review of Economic Studies, 40 (1973), 391-401.doi: 10.2307/2296458. |
[14] |
S. G. Peng, Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control and Optimization, 30 (1992), 284-304.doi: 10.1137/0330018. |
[15] |
R. Pollak, Consistent planning, Rev. Econ. Stud., 35 (1968), 201-208.doi: 10.2307/2296548. |
[16] |
R. Strotz, Myopia and inconsistency in dynamic utility maximization, Rev. Econ. Stud., 23 (1955), 165-180.doi: 10.2307/2295722. |
[17] |
J. M. Yong, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Related Fields, 1 (2011), 83-118.doi: 10.3934/mcrf.2011.1.83. |
[18] |
J. M. Yong, Deterministic time-inconsistent optimal control problems-An essentially cooperative approach, Acta Math. Appl. Sinica Engl. Ser., 28 (2012), 1-30.doi: 10.1007/s10255-012-0120-3. |
[19] |
J. M. Yong, Time-inconsistent optimal control problems and the Equilibrium HJB equation, Mathematical Control and Related Fields, 2 (2012), 271-329.doi: 10.3934/mcrf.2012.2.271. |