• Previous Article
    Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching
  • MCRF Home
  • This Issue
  • Next Article
    Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation
September  2015, 5(3): 679-695. doi: 10.3934/mcrf.2015.5.679

Constrained nonsmooth utility maximization on the positive real line

1. 

Department of Mathematics, Imperial College, London, SW7 2AZ, United Kingdom

2. 

Department of Mathematics, Imperial College, London SW7 2AZ

Received  March 2014 Revised  December 2014 Published  July 2015

We maximize the expected utility of terminal wealth in an incomplete market where there are cone constraints on the investor's portfolio process and the utility function is not assumed to be strictly concave or differentiable. We establish the existence of the optimal solutions to the primal and dual problems and their dual relationship. We simplify the present proofs in this area and extend the existing duality theory to the constrained nonsmooth setting.
Citation: Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control & Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679
References:
[1]

F. Bellini and M. Frittelli, On the existence of minimax martingale measures,, Math. Finance, 12 (2002), 1.  doi: 10.1111/1467-9965.00001.  Google Scholar

[2]

S. Biagini and M. Frittelli, Utility maximization in incomplete markets for unbounded processes,, Finance Stoch., 9 (2005), 493.  doi: 10.1007/s00780-005-0163-x.  Google Scholar

[3]

S. Biagini, M. Frittelli and M. Grasselli, Indifference price with general semimartingales,, Math. Finance, 21 (2011), 423.  doi: 10.1111/j.1467-9965.2010.00443.x.  Google Scholar

[4]

B. Bian, S. Miao and H. Zheng, Smooth value functions for a class of nonsmooth utility maximization problems,, SIAM J. Financial Math., 2 (2011), 727.  doi: 10.1137/100793396.  Google Scholar

[5]

B. Bian and H. Zheng, Turnpike property and convergence rate for an investment model with general utility functions,, J. Economic Dynamics Control, 51 (2015), 28.  doi: 10.1016/j.jedc.2014.09.025.  Google Scholar

[6]

B. Bouchard, N. Touzi and A. Zeghal, Dual formulation of the utility maximization problem: The case of nonsmooth utility,, Ann. Appl. Probab., 14 (2004), 678.  doi: 10.1214/105051604000000062.  Google Scholar

[7]

J. Cvitanić, Minimizing expected loss of hedging in incomplete and constrained markets,, SIAM J. Control Optim., 38 (2000), 1050.  doi: 10.1137/S036301299834185X.  Google Scholar

[8]

J. Cvitanić, W. Schachermayer and H. Wang, Utility maximization in incomplete markets with random endowment,, Finance Stoch., 5 (2001), 259.  doi: 10.1007/PL00013534.  Google Scholar

[9]

C. Czichowsky, N. Westray and H. Zheng, Convergence in the semimartingale topology and constrained portfolios,, Séminaire de Probabilités, 2006 (2011), 395.  doi: 10.1007/978-3-642-15217-7_17.  Google Scholar

[10]

G. Deelstra, H. Pham and N. Touzi, Dual formulation of the utility maximization problem under transaction costs,, Ann. Appl. Probab., 11 (2001), 1353.  doi: 10.1214/aoap/1015345406.  Google Scholar

[11]

F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing,, Math. Ann., 300 (1994), 463.  doi: 10.1007/BF01450498.  Google Scholar

[12]

M. Émery, Une topologie sur l'espace des semimartingales,, Séminaire de Probabilités, XIII (1979), 260.   Google Scholar

[13]

H. Föllmer and D. Kramkov, Optional decompositions under constraints,, Probab. Theory Related Fields, 109 (1997), 1.  doi: 10.1007/s004400050122.  Google Scholar

[14]

H. G. Heuser, Functional Analysis,, Wiley, (1982).   Google Scholar

[15]

E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable,, Springer, (1965).   Google Scholar

[16]

J. Hugonnier and D. Kramkov, Optimal investment with random endowments in incomplete markets,, Ann. Appl. Probab., 14 (2004), 845.  doi: 10.1214/105051604000000134.  Google Scholar

[17]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes,, $2^{nd}$ edition, (2003).  doi: 10.1007/978-3-662-05265-5.  Google Scholar

[18]

I. Karatzas and G. Žitković, Optimal consumption from investment and random endowment in incomplete semimartingale markets,, Ann. Probab., 31 (2003), 1821.  doi: 10.1214/aop/1068646367.  Google Scholar

[19]

D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets,, Ann. Appl. Probab., 9 (1999), 904.  doi: 10.1214/aoap/1029962818.  Google Scholar

[20]

D. Kramkov and W. Schachermayer, Necessary and sufficient conditions in the problem of optimal investment in incomplete markets,, Ann. Appl. Probab., 13 (2003), 1504.  doi: 10.1214/aoap/1069786508.  Google Scholar

[21]

D. G. Luenberger, Optimization by Vector Space Methods,, Wiley, (1969).   Google Scholar

[22]

J. Mémin, Espaces de semi martingales et changement de probabilité,, Z. Wahrsch. Verw. Gebiete, 52 (1980), 9.  doi: 10.1007/BF00534184.  Google Scholar

[23]

M. Mnif and H. Pham, Stochastic optimization under constraints,, Stochastic Process. Appl., 93 (2001), 149.  doi: 10.1016/S0304-4149(00)00089-2.  Google Scholar

[24]

H. Pham, Minimizing shortfall risk and applications to finance and insurance problems,, Ann. Appl. Probab., 12 (2002), 143.  doi: 10.1214/aoap/1015961159.  Google Scholar

[25]

P. E. Protter, Stochastic Integration and Differential Equations,, $2^{nd}$ edition, (2004).   Google Scholar

[26]

R. T. Rockafellar, Extension of Fenchel's duality theorem for convex functions,, Duke Math. J., 33 (1966), 81.  doi: 10.1215/S0012-7094-66-03312-6.  Google Scholar

[27]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1970).   Google Scholar

[28]

R. T. Rockafellar, Integrals which are convex functionals. II,, Pacific J. Math., 39 (1971), 439.  doi: 10.2140/pjm.1971.39.439.  Google Scholar

[29]

L. C. G. Rogers, Duality in constrained optimal investment and consumption problems: A synthesis,, in Paris-Princeton Lectures on Mathematical Finance, 1814 (2003), 95.  doi: 10.1007/978-3-540-44859-4_3.  Google Scholar

[30]

N. Westray and H. Zheng, Constrained nonsmooth utility maximization without quadratic inf convolution,, Stochastic Process. Appl., 119 (2009), 1561.  doi: 10.1016/j.spa.2008.08.002.  Google Scholar

[31]

N. Westray and H. Zheng, Minimal sufficient conditions for a primal optimizer in nonsmooth utility maximization,, Finance Stoch., 15 (2011), 501.  doi: 10.1007/s00780-010-0128-6.  Google Scholar

[32]

K. Yosida and E. Hewitt, Finitely additive measures,, Trans. Amer. Math. Soc., 72 (1952), 46.  doi: 10.1090/S0002-9947-1952-0045194-X.  Google Scholar

show all references

References:
[1]

F. Bellini and M. Frittelli, On the existence of minimax martingale measures,, Math. Finance, 12 (2002), 1.  doi: 10.1111/1467-9965.00001.  Google Scholar

[2]

S. Biagini and M. Frittelli, Utility maximization in incomplete markets for unbounded processes,, Finance Stoch., 9 (2005), 493.  doi: 10.1007/s00780-005-0163-x.  Google Scholar

[3]

S. Biagini, M. Frittelli and M. Grasselli, Indifference price with general semimartingales,, Math. Finance, 21 (2011), 423.  doi: 10.1111/j.1467-9965.2010.00443.x.  Google Scholar

[4]

B. Bian, S. Miao and H. Zheng, Smooth value functions for a class of nonsmooth utility maximization problems,, SIAM J. Financial Math., 2 (2011), 727.  doi: 10.1137/100793396.  Google Scholar

[5]

B. Bian and H. Zheng, Turnpike property and convergence rate for an investment model with general utility functions,, J. Economic Dynamics Control, 51 (2015), 28.  doi: 10.1016/j.jedc.2014.09.025.  Google Scholar

[6]

B. Bouchard, N. Touzi and A. Zeghal, Dual formulation of the utility maximization problem: The case of nonsmooth utility,, Ann. Appl. Probab., 14 (2004), 678.  doi: 10.1214/105051604000000062.  Google Scholar

[7]

J. Cvitanić, Minimizing expected loss of hedging in incomplete and constrained markets,, SIAM J. Control Optim., 38 (2000), 1050.  doi: 10.1137/S036301299834185X.  Google Scholar

[8]

J. Cvitanić, W. Schachermayer and H. Wang, Utility maximization in incomplete markets with random endowment,, Finance Stoch., 5 (2001), 259.  doi: 10.1007/PL00013534.  Google Scholar

[9]

C. Czichowsky, N. Westray and H. Zheng, Convergence in the semimartingale topology and constrained portfolios,, Séminaire de Probabilités, 2006 (2011), 395.  doi: 10.1007/978-3-642-15217-7_17.  Google Scholar

[10]

G. Deelstra, H. Pham and N. Touzi, Dual formulation of the utility maximization problem under transaction costs,, Ann. Appl. Probab., 11 (2001), 1353.  doi: 10.1214/aoap/1015345406.  Google Scholar

[11]

F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing,, Math. Ann., 300 (1994), 463.  doi: 10.1007/BF01450498.  Google Scholar

[12]

M. Émery, Une topologie sur l'espace des semimartingales,, Séminaire de Probabilités, XIII (1979), 260.   Google Scholar

[13]

H. Föllmer and D. Kramkov, Optional decompositions under constraints,, Probab. Theory Related Fields, 109 (1997), 1.  doi: 10.1007/s004400050122.  Google Scholar

[14]

H. G. Heuser, Functional Analysis,, Wiley, (1982).   Google Scholar

[15]

E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable,, Springer, (1965).   Google Scholar

[16]

J. Hugonnier and D. Kramkov, Optimal investment with random endowments in incomplete markets,, Ann. Appl. Probab., 14 (2004), 845.  doi: 10.1214/105051604000000134.  Google Scholar

[17]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes,, $2^{nd}$ edition, (2003).  doi: 10.1007/978-3-662-05265-5.  Google Scholar

[18]

I. Karatzas and G. Žitković, Optimal consumption from investment and random endowment in incomplete semimartingale markets,, Ann. Probab., 31 (2003), 1821.  doi: 10.1214/aop/1068646367.  Google Scholar

[19]

D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets,, Ann. Appl. Probab., 9 (1999), 904.  doi: 10.1214/aoap/1029962818.  Google Scholar

[20]

D. Kramkov and W. Schachermayer, Necessary and sufficient conditions in the problem of optimal investment in incomplete markets,, Ann. Appl. Probab., 13 (2003), 1504.  doi: 10.1214/aoap/1069786508.  Google Scholar

[21]

D. G. Luenberger, Optimization by Vector Space Methods,, Wiley, (1969).   Google Scholar

[22]

J. Mémin, Espaces de semi martingales et changement de probabilité,, Z. Wahrsch. Verw. Gebiete, 52 (1980), 9.  doi: 10.1007/BF00534184.  Google Scholar

[23]

M. Mnif and H. Pham, Stochastic optimization under constraints,, Stochastic Process. Appl., 93 (2001), 149.  doi: 10.1016/S0304-4149(00)00089-2.  Google Scholar

[24]

H. Pham, Minimizing shortfall risk and applications to finance and insurance problems,, Ann. Appl. Probab., 12 (2002), 143.  doi: 10.1214/aoap/1015961159.  Google Scholar

[25]

P. E. Protter, Stochastic Integration and Differential Equations,, $2^{nd}$ edition, (2004).   Google Scholar

[26]

R. T. Rockafellar, Extension of Fenchel's duality theorem for convex functions,, Duke Math. J., 33 (1966), 81.  doi: 10.1215/S0012-7094-66-03312-6.  Google Scholar

[27]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1970).   Google Scholar

[28]

R. T. Rockafellar, Integrals which are convex functionals. II,, Pacific J. Math., 39 (1971), 439.  doi: 10.2140/pjm.1971.39.439.  Google Scholar

[29]

L. C. G. Rogers, Duality in constrained optimal investment and consumption problems: A synthesis,, in Paris-Princeton Lectures on Mathematical Finance, 1814 (2003), 95.  doi: 10.1007/978-3-540-44859-4_3.  Google Scholar

[30]

N. Westray and H. Zheng, Constrained nonsmooth utility maximization without quadratic inf convolution,, Stochastic Process. Appl., 119 (2009), 1561.  doi: 10.1016/j.spa.2008.08.002.  Google Scholar

[31]

N. Westray and H. Zheng, Minimal sufficient conditions for a primal optimizer in nonsmooth utility maximization,, Finance Stoch., 15 (2011), 501.  doi: 10.1007/s00780-010-0128-6.  Google Scholar

[32]

K. Yosida and E. Hewitt, Finitely additive measures,, Trans. Amer. Math. Soc., 72 (1952), 46.  doi: 10.1090/S0002-9947-1952-0045194-X.  Google Scholar

[1]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[2]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[5]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[6]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[7]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[8]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[9]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[10]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[11]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

[12]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[13]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[14]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[15]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[16]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[17]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296

[18]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[19]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[20]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]