March  2015, 5(1): 73-96. doi: 10.3934/mcrf.2015.5.73

Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result

1. 

Conservatoire National des Arts et Métiers, M2N, Case 2D 5000, 292 rue Saint-Martin, 75003 Paris, France

2. 

Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk

Received  March 2013 Revised  May 2014 Published  January 2015

In this paper we study an optimal control problem (OCP) associated to a linear elliptic equation on a bounded domain $\Omega$. The matrix-valued coefficients $A$ of such systems is our control in $\Omega$ and will be taken in $L^2(\Omega;\mathbb{R}^{N\times N})$ which in particular may comprises the case of unboundedness. Concerning the boundary value problems associated to the equations of this type, one may exhibit non-uniqueness of weak solutions--- namely, approximable solutions as well as another type of weak solutions that can not be obtained through the $L^\infty$-approximation of matrix $A$. Following the direct method in the calculus of variations, we show that the given OCP is well-possed and admits at least one solution. At the same time, optimal solutions to such problem may have a singular character in the above sense. In view of this we indicate two types of optimal solutions to the above problem: the so-called variational and non-variational solutions, and show that some of that optimal solutions can not be attainable through the $L^\infty$-approximation of the original problem.
Citation: Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73
References:
[1]

Revista Matematica Complutense, 24 (2011), 83-94. doi: 10.1007/s13163-010-0030-y.  Google Scholar

[2]

in Topics in the Mathematical Modelling of Composite Materials, Prog. Nonlinear Diff. Equ. Appl., 31, Birkhäuser, Boston, 1997, 45-93.  Google Scholar

[3]

NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 332, Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3428-6.  Google Scholar

[4]

CRC Press, Boca Raton, 1992.  Google Scholar

[5]

Probab. Theory and Related Fields, 105 (1996), 279-334. doi: 10.1007/BF01192211.  Google Scholar

[6]

Bulletin of Dniproperovsk National University, Series: Mathematical Modelling, 22 (2014), 3-38. Google Scholar

[7]

C. R. Math. Acad. Sci. Paris, 347 (2009), 773-778. doi: 10.1016/j.crma.2009.05.008.  Google Scholar

[8]

Descrete and Continuous Dynamical System, Series A, 34 (2014), 2105-2133. doi: 10.3934/dcds.2014.34.2105.  Google Scholar

[9]

Systems & Control: Foundations & Applications, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[10]

Journal of Optimization Theory and Applications, 150 (2011), 205-232. doi: 10.1007/s10957-011-9840-4.  Google Scholar

[11]

Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31-53. doi: 10.4171/ZAA/1447.  Google Scholar

[12]

Zeitschrift für Analysis und ihre Anwendungen, 2014, (to appear). Google Scholar

[13]

Zeitschrift für Analysis und ihre Anwendungen, 2014, (to appear). Google Scholar

[14]

Springer-Verlag, Berlin, 1971.  Google Scholar

[15]

Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385-387.  Google Scholar

[16]

J. of Functional Analysis, 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556.  Google Scholar

[17]

Functional Analysis and Its Applications, 31 (1997), 156-166. doi: 10.1007/BF02465783.  Google Scholar

[18]

Sbornik: Mathematics, 189 (1998), 27-58. doi: 10.1070/SM1998v189n08ABEH000344.  Google Scholar

[19]

Functional Analysis and Its Applications, 38 (2004), 173-183. doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

show all references

References:
[1]

Revista Matematica Complutense, 24 (2011), 83-94. doi: 10.1007/s13163-010-0030-y.  Google Scholar

[2]

in Topics in the Mathematical Modelling of Composite Materials, Prog. Nonlinear Diff. Equ. Appl., 31, Birkhäuser, Boston, 1997, 45-93.  Google Scholar

[3]

NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 332, Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3428-6.  Google Scholar

[4]

CRC Press, Boca Raton, 1992.  Google Scholar

[5]

Probab. Theory and Related Fields, 105 (1996), 279-334. doi: 10.1007/BF01192211.  Google Scholar

[6]

Bulletin of Dniproperovsk National University, Series: Mathematical Modelling, 22 (2014), 3-38. Google Scholar

[7]

C. R. Math. Acad. Sci. Paris, 347 (2009), 773-778. doi: 10.1016/j.crma.2009.05.008.  Google Scholar

[8]

Descrete and Continuous Dynamical System, Series A, 34 (2014), 2105-2133. doi: 10.3934/dcds.2014.34.2105.  Google Scholar

[9]

Systems & Control: Foundations & Applications, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[10]

Journal of Optimization Theory and Applications, 150 (2011), 205-232. doi: 10.1007/s10957-011-9840-4.  Google Scholar

[11]

Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31-53. doi: 10.4171/ZAA/1447.  Google Scholar

[12]

Zeitschrift für Analysis und ihre Anwendungen, 2014, (to appear). Google Scholar

[13]

Zeitschrift für Analysis und ihre Anwendungen, 2014, (to appear). Google Scholar

[14]

Springer-Verlag, Berlin, 1971.  Google Scholar

[15]

Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385-387.  Google Scholar

[16]

J. of Functional Analysis, 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556.  Google Scholar

[17]

Functional Analysis and Its Applications, 31 (1997), 156-166. doi: 10.1007/BF02465783.  Google Scholar

[18]

Sbornik: Mathematics, 189 (1998), 27-58. doi: 10.1070/SM1998v189n08ABEH000344.  Google Scholar

[19]

Functional Analysis and Its Applications, 38 (2004), 173-183. doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

[1]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[2]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[3]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[4]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[5]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[6]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[7]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021050

[8]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[9]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[12]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[13]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[14]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[15]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[16]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[17]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[18]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[19]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[20]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]