-
Previous Article
A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon
- MCRF Home
- This Issue
-
Next Article
Zubov's equation for state-constrained perturbed nonlinear systems
Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result
1. | Conservatoire National des Arts et Métiers, M2N, Case 2D 5000, 292 rue Saint-Martin, 75003 Paris, France |
2. | Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk |
References:
[1] |
Revista Matematica Complutense, 24 (2011), 83-94.
doi: 10.1007/s13163-010-0030-y. |
[2] |
in Topics in the Mathematical Modelling of Composite Materials, Prog. Nonlinear Diff. Equ. Appl., 31, Birkhäuser, Boston, 1997, 45-93. |
[3] |
NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 332, Kluwer Academic Publishers Group, Dordrecht, 1991.
doi: 10.1007/978-94-011-3428-6. |
[4] |
CRC Press, Boca Raton, 1992. |
[5] |
Probab. Theory and Related Fields, 105 (1996), 279-334.
doi: 10.1007/BF01192211. |
[6] |
Bulletin of Dniproperovsk National University, Series: Mathematical Modelling, 22 (2014), 3-38. Google Scholar |
[7] |
C. R. Math. Acad. Sci. Paris, 347 (2009), 773-778.
doi: 10.1016/j.crma.2009.05.008. |
[8] |
Descrete and Continuous Dynamical System, Series A, 34 (2014), 2105-2133.
doi: 10.3934/dcds.2014.34.2105. |
[9] |
Systems & Control: Foundations & Applications, Birkhäuser/Springer, New York, 2011.
doi: 10.1007/978-0-8176-8149-4. |
[10] |
Journal of Optimization Theory and Applications, 150 (2011), 205-232.
doi: 10.1007/s10957-011-9840-4. |
[11] |
Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31-53.
doi: 10.4171/ZAA/1447. |
[12] |
Zeitschrift für Analysis und ihre Anwendungen, 2014, (to appear). Google Scholar |
[13] |
Zeitschrift für Analysis und ihre Anwendungen, 2014, (to appear). Google Scholar |
[14] |
Springer-Verlag, Berlin, 1971. |
[15] |
Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385-387. |
[16] |
J. of Functional Analysis, 173 (2000), 103-153.
doi: 10.1006/jfan.1999.3556. |
[17] |
Functional Analysis and Its Applications, 31 (1997), 156-166.
doi: 10.1007/BF02465783. |
[18] |
Sbornik: Mathematics, 189 (1998), 27-58.
doi: 10.1070/SM1998v189n08ABEH000344. |
[19] |
Functional Analysis and Its Applications, 38 (2004), 173-183.
doi: 10.1023/B:FAIA.0000042802.86050.5e. |
show all references
References:
[1] |
Revista Matematica Complutense, 24 (2011), 83-94.
doi: 10.1007/s13163-010-0030-y. |
[2] |
in Topics in the Mathematical Modelling of Composite Materials, Prog. Nonlinear Diff. Equ. Appl., 31, Birkhäuser, Boston, 1997, 45-93. |
[3] |
NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 332, Kluwer Academic Publishers Group, Dordrecht, 1991.
doi: 10.1007/978-94-011-3428-6. |
[4] |
CRC Press, Boca Raton, 1992. |
[5] |
Probab. Theory and Related Fields, 105 (1996), 279-334.
doi: 10.1007/BF01192211. |
[6] |
Bulletin of Dniproperovsk National University, Series: Mathematical Modelling, 22 (2014), 3-38. Google Scholar |
[7] |
C. R. Math. Acad. Sci. Paris, 347 (2009), 773-778.
doi: 10.1016/j.crma.2009.05.008. |
[8] |
Descrete and Continuous Dynamical System, Series A, 34 (2014), 2105-2133.
doi: 10.3934/dcds.2014.34.2105. |
[9] |
Systems & Control: Foundations & Applications, Birkhäuser/Springer, New York, 2011.
doi: 10.1007/978-0-8176-8149-4. |
[10] |
Journal of Optimization Theory and Applications, 150 (2011), 205-232.
doi: 10.1007/s10957-011-9840-4. |
[11] |
Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31-53.
doi: 10.4171/ZAA/1447. |
[12] |
Zeitschrift für Analysis und ihre Anwendungen, 2014, (to appear). Google Scholar |
[13] |
Zeitschrift für Analysis und ihre Anwendungen, 2014, (to appear). Google Scholar |
[14] |
Springer-Verlag, Berlin, 1971. |
[15] |
Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385-387. |
[16] |
J. of Functional Analysis, 173 (2000), 103-153.
doi: 10.1006/jfan.1999.3556. |
[17] |
Functional Analysis and Its Applications, 31 (1997), 156-166.
doi: 10.1007/BF02465783. |
[18] |
Sbornik: Mathematics, 189 (1998), 27-58.
doi: 10.1070/SM1998v189n08ABEH000344. |
[19] |
Functional Analysis and Its Applications, 38 (2004), 173-183.
doi: 10.1023/B:FAIA.0000042802.86050.5e. |
[1] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[2] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[3] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[4] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[5] |
Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045 |
[6] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[7] |
Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021050 |
[8] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[9] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[10] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[11] |
Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021011 |
[12] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[13] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[14] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[15] |
Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035 |
[16] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210 |
[17] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[18] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[19] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[20] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]