December  2015, 5(4): 743-760. doi: 10.3934/mcrf.2015.5.743

Exact controllability for the Lamé system

1. 

Département de Mathématiques, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar, Tunisia

2. 

Institut de Mathématiques de Toulouse, Université Paul Sabatier & CNRS, 31062 Toulouse Cedex

Received  August 2014 Revised  May 2015 Published  October 2015

In this article, we prove an exact boundary controllability result for the isotropic elastic wave system in a bounded domain $\Omega$ of $\mathbb{R}^{3}$. This result is obtained under a microlocal condition linking the bicharacteristic paths of the system and the region of the boundary on which the control acts. This condition is to be compared with the so-called Geometric Control Condition by Bardos, Lebeau and Rauch [3]. The proof relies on microlocal tools, namely the propagation of the $C^{\infty}$ wave front and microlocal defect measures.
Citation: Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743
References:
[1]

L. Aloui, Stabilisation Neumann pour l'équation des ondes sur un domaine extêrieur,, J. Math. Pures Appl., 81 (2002), 1113.  doi: 10.1016/S0021-7824(02)01261-8.  Google Scholar

[2]

K. Andersson and R. Melrose, The propagation of singularities along gliding rays,, Invent. Math., 41 (1977), 197.  doi: 10.1007/BF01403048.  Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optimization, 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[4]

C. Bardos, T. Masrour and F. Tatout, Singularités du problème d'élastodynamique,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1157.   Google Scholar

[5]

C. Bardos, T. Masrour and F. Tatout, Condition nécessaire et suffisante pour la controlabilité exacte et la stabilisation du problème de l'élastodynamique,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1279.   Google Scholar

[6]

C. Bardos, T. Masrour and F. Tatout, Obseravation and control of elastic waves,, in Singularities and Oscillations (eds. J. Rauch, (1997), 1.  doi: 10.1007/978-1-4612-1972-9_1.  Google Scholar

[7]

M. Bellassoued, Energy decay for the elastic wave equation with a local time-dependant nonlinear damping,, Acta Math. Sinica, 24 (2008), 1175.  doi: 10.1007/s10114-007-6468-2.  Google Scholar

[8]

N. Burq, Contrôle de l'équation des ondes dans des ouverts comportant des coins,, Bull. Soc. Math. France, 126 (1998), 601.   Google Scholar

[9]

N. Burq and P. Gérard, Condition Nécessaire et suffisante pour la contrôlabilité exacte des ondes,, Comptes Rendus de l'Académie des Sciences, 325 (1997), 749.  doi: 10.1016/S0764-4442(97)80053-5.  Google Scholar

[10]

N. Burq and G. Lebeau, Mesures de Défaut de compacité, Application au système de Lamé,, Ann. Scient. Ec. Norm. Sup. 4 série, 34 (2001), 817.  doi: 10.1016/S0012-9593(01)01078-3.  Google Scholar

[11]

M. Daoulatli, B. Dehman and M. Khenissi, Local energy decay for the elastic system with nonlinear damping in an exterior domain,, SIAM J. Control Optim., 48 (2010), 5254.  doi: 10.1137/090757332.  Google Scholar

[12]

B. Dehman and L. Robbiano, La propriété du prolongement unique pour un système elliptique. Le système de Lamé,, J. Math. Pures Appl. (9), 72 (1993), 475.   Google Scholar

[13]

T. Duyckaerts, Thèse de Doctorat,, Université de Paris Sud, (2004).   Google Scholar

[14]

P. Gérard, Microlocal defect measures,, Com.Par. Diff. Eq., 16 (1991), 1761.  doi: 10.1080/03605309108820822.  Google Scholar

[15]

L. Hörmander, The Analysis of Partial Differential Operators,, Vol. 3, (1985).   Google Scholar

[16]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, J. Arch. Ration. Mech. Anal., 148 (1999), 179.  doi: 10.1007/s002050050160.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1,, Rech. Math. Appl., (1988).   Google Scholar

[18]

M. Taylor, Pseudodifferential Operators,, Princeton University Press, (1981).   Google Scholar

[19]

K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell's equations,, Japan J. Math., 14 (1988), 119.   Google Scholar

[20]

K. Yamamoto, Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition,, Math. Scand., 65 (1989), 206.   Google Scholar

[21]

K. Yamamoto, Propagation of microlocal regularities in Sobolev spaces to solutions of boundary value problems for elastic equations,, Hokkaido Math. Journal, 35 (2006), 497.  doi: 10.14492/hokmj/1285766414.  Google Scholar

show all references

References:
[1]

L. Aloui, Stabilisation Neumann pour l'équation des ondes sur un domaine extêrieur,, J. Math. Pures Appl., 81 (2002), 1113.  doi: 10.1016/S0021-7824(02)01261-8.  Google Scholar

[2]

K. Andersson and R. Melrose, The propagation of singularities along gliding rays,, Invent. Math., 41 (1977), 197.  doi: 10.1007/BF01403048.  Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optimization, 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[4]

C. Bardos, T. Masrour and F. Tatout, Singularités du problème d'élastodynamique,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1157.   Google Scholar

[5]

C. Bardos, T. Masrour and F. Tatout, Condition nécessaire et suffisante pour la controlabilité exacte et la stabilisation du problème de l'élastodynamique,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1279.   Google Scholar

[6]

C. Bardos, T. Masrour and F. Tatout, Obseravation and control of elastic waves,, in Singularities and Oscillations (eds. J. Rauch, (1997), 1.  doi: 10.1007/978-1-4612-1972-9_1.  Google Scholar

[7]

M. Bellassoued, Energy decay for the elastic wave equation with a local time-dependant nonlinear damping,, Acta Math. Sinica, 24 (2008), 1175.  doi: 10.1007/s10114-007-6468-2.  Google Scholar

[8]

N. Burq, Contrôle de l'équation des ondes dans des ouverts comportant des coins,, Bull. Soc. Math. France, 126 (1998), 601.   Google Scholar

[9]

N. Burq and P. Gérard, Condition Nécessaire et suffisante pour la contrôlabilité exacte des ondes,, Comptes Rendus de l'Académie des Sciences, 325 (1997), 749.  doi: 10.1016/S0764-4442(97)80053-5.  Google Scholar

[10]

N. Burq and G. Lebeau, Mesures de Défaut de compacité, Application au système de Lamé,, Ann. Scient. Ec. Norm. Sup. 4 série, 34 (2001), 817.  doi: 10.1016/S0012-9593(01)01078-3.  Google Scholar

[11]

M. Daoulatli, B. Dehman and M. Khenissi, Local energy decay for the elastic system with nonlinear damping in an exterior domain,, SIAM J. Control Optim., 48 (2010), 5254.  doi: 10.1137/090757332.  Google Scholar

[12]

B. Dehman and L. Robbiano, La propriété du prolongement unique pour un système elliptique. Le système de Lamé,, J. Math. Pures Appl. (9), 72 (1993), 475.   Google Scholar

[13]

T. Duyckaerts, Thèse de Doctorat,, Université de Paris Sud, (2004).   Google Scholar

[14]

P. Gérard, Microlocal defect measures,, Com.Par. Diff. Eq., 16 (1991), 1761.  doi: 10.1080/03605309108820822.  Google Scholar

[15]

L. Hörmander, The Analysis of Partial Differential Operators,, Vol. 3, (1985).   Google Scholar

[16]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, J. Arch. Ration. Mech. Anal., 148 (1999), 179.  doi: 10.1007/s002050050160.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1,, Rech. Math. Appl., (1988).   Google Scholar

[18]

M. Taylor, Pseudodifferential Operators,, Princeton University Press, (1981).   Google Scholar

[19]

K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell's equations,, Japan J. Math., 14 (1988), 119.   Google Scholar

[20]

K. Yamamoto, Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition,, Math. Scand., 65 (1989), 206.   Google Scholar

[21]

K. Yamamoto, Propagation of microlocal regularities in Sobolev spaces to solutions of boundary value problems for elastic equations,, Hokkaido Math. Journal, 35 (2006), 497.  doi: 10.14492/hokmj/1285766414.  Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[3]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[4]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[5]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]