December  2015, 5(4): 761-780. doi: 10.3934/mcrf.2015.5.761

Stabilization of hyperbolic equations with mixed boundary conditions

1. 

School of Mathematics, Sichuan University, Chengdu 610064, China

Received  July 2014 Revised  January 2015 Published  October 2015

This paper is devoted to study decay properties of solutions to hyperbolic equations in a bounded domain with two types of dissipative mechanisms, i.e. either with a small boundary or an internal damping. Both of the equations are equipped with the mixed boundary conditions. When the Geometric Control Condition on the dissipative region is not satisfied, we show that sufficiently smooth solutions to the equations decay logarithmically, under sharp regularity assumptions on the coefficients, the damping and the boundary of the domain involved in the equations. Our decay results rely on an analysis of the size of resolvent operators for hyperbolic equations on the imaginary axis. To derive this kind of resolvent estimates, we employ global Carleman estimates for elliptic equations with mixed boundary conditions.
Citation: Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control & Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761
References:
[1]

K. Ammari, Dirichlet boundary stabilization of the wave equation,, Asymptot. Anal., 30 (2002), 117.   Google Scholar

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[3]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces,, J. Evol. Equ., 8 (2008), 765.  doi: 10.1007/s00028-008-0424-1.  Google Scholar

[4]

M. Bellassoued, Decay of solutions of the elastic wave equation with a localized dissipation,, Ann. Fac. Sci. Toulouse Math. (6), 12 (2003), 267.  doi: 10.5802/afst.1049.  Google Scholar

[5]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[6]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel,, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], 180 (1998), 1.  doi: 10.1007/BF02392877.  Google Scholar

[7]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 14 (2007), 35.  doi: 10.4310/MRL.2007.v14.n1.a3.  Google Scholar

[8]

H. Christianson, E. Schenck, A. Vasy and J. Wunsch, From resolvent estimates to damped waves,, J. Anal. Math., 122 (2014), 14.  doi: 10.1007/s11854-014-0006-9.  Google Scholar

[9]

P. Cornilleau and L. Robbiano, Carleman estimates for the Zaremba boundary condition and stabilization of waves,, Amer. J. Math., 136 (2014), 393.  doi: 10.1353/ajm.2014.0014.  Google Scholar

[10]

X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping,, in Some Problems on Nonlinear Hyperbolic Equations and Applications, (2010), 310.  doi: 10.1080/03605300903116389.  Google Scholar

[11]

X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping,, Z. angew. Math. Phys., 62 (2011), 667.  doi: 10.1007/s00033-010-0113-0.  Google Scholar

[12]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications,, (French) [Dissipative Dynamical Systems and Applications], (1991).   Google Scholar

[13]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Differential Equations, 1 (1985), 43.   Google Scholar

[14]

O. Yu. Imanuvilov and M. Yamomoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate,, Inverse Problems, 14 (1998), 1229.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[15]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1990), 33.   Google Scholar

[16]

G. Lebeau, Equation des ondes amorties,, (French) [Damped wave equation], (1993), 73.   Google Scholar

[17]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord,, (French) [Stabilization of the wave equations by the boundary], 86 (1997), 465.  doi: 10.1215/S0012-7094-97-08614-2.  Google Scholar

[18]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. angew. Math. Phys., 56 (2005), 630.  doi: 10.1007/s00033-004-3073-4.  Google Scholar

[19]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators,, ESAIM Control Optim. Calc. Var., 19 (2013), 255.  doi: 10.1051/cocv/2012008.  Google Scholar

[20]

K.-D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Differential Equations, 240 (2007), 92.  doi: 10.1016/j.jde.2007.05.016.  Google Scholar

[21]

K.-D. Phung and X. Zhang, Time reversal focusing of the initial state for Kirchoff plate,, SIAM J. Appl. Math., 68 (2008), 1535.  doi: 10.1137/070684823.  Google Scholar

[22]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[23]

T. Qin, The global smooth solutions of second order quasilinear hyperbolic equations with dissipative boundary conditions,, Chinese Ann. Math. Ser. B, 9 (1988), 251.   Google Scholar

[24]

J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds,, Comm. Pure Appl. Math., 28 (1975), 501.  doi: 10.1002/cpa.3160280405.  Google Scholar

[25]

M. Reed and B. Simon, Methods of Modern Mathematics Physics II: Fourier Analysis, Self-Adjointness,, Academic Press, (1975).   Google Scholar

[26]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations,, in Proc. Internat. Congress of Mathematicians, (1971), 3008.  doi: 10.1007/978-0-387-89488-1.  Google Scholar

[27]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.  doi: 10.1080/03605309908820684.  Google Scholar

show all references

References:
[1]

K. Ammari, Dirichlet boundary stabilization of the wave equation,, Asymptot. Anal., 30 (2002), 117.   Google Scholar

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[3]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces,, J. Evol. Equ., 8 (2008), 765.  doi: 10.1007/s00028-008-0424-1.  Google Scholar

[4]

M. Bellassoued, Decay of solutions of the elastic wave equation with a localized dissipation,, Ann. Fac. Sci. Toulouse Math. (6), 12 (2003), 267.  doi: 10.5802/afst.1049.  Google Scholar

[5]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[6]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel,, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], 180 (1998), 1.  doi: 10.1007/BF02392877.  Google Scholar

[7]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 14 (2007), 35.  doi: 10.4310/MRL.2007.v14.n1.a3.  Google Scholar

[8]

H. Christianson, E. Schenck, A. Vasy and J. Wunsch, From resolvent estimates to damped waves,, J. Anal. Math., 122 (2014), 14.  doi: 10.1007/s11854-014-0006-9.  Google Scholar

[9]

P. Cornilleau and L. Robbiano, Carleman estimates for the Zaremba boundary condition and stabilization of waves,, Amer. J. Math., 136 (2014), 393.  doi: 10.1353/ajm.2014.0014.  Google Scholar

[10]

X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping,, in Some Problems on Nonlinear Hyperbolic Equations and Applications, (2010), 310.  doi: 10.1080/03605300903116389.  Google Scholar

[11]

X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping,, Z. angew. Math. Phys., 62 (2011), 667.  doi: 10.1007/s00033-010-0113-0.  Google Scholar

[12]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications,, (French) [Dissipative Dynamical Systems and Applications], (1991).   Google Scholar

[13]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Differential Equations, 1 (1985), 43.   Google Scholar

[14]

O. Yu. Imanuvilov and M. Yamomoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate,, Inverse Problems, 14 (1998), 1229.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[15]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1990), 33.   Google Scholar

[16]

G. Lebeau, Equation des ondes amorties,, (French) [Damped wave equation], (1993), 73.   Google Scholar

[17]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord,, (French) [Stabilization of the wave equations by the boundary], 86 (1997), 465.  doi: 10.1215/S0012-7094-97-08614-2.  Google Scholar

[18]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. angew. Math. Phys., 56 (2005), 630.  doi: 10.1007/s00033-004-3073-4.  Google Scholar

[19]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators,, ESAIM Control Optim. Calc. Var., 19 (2013), 255.  doi: 10.1051/cocv/2012008.  Google Scholar

[20]

K.-D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Differential Equations, 240 (2007), 92.  doi: 10.1016/j.jde.2007.05.016.  Google Scholar

[21]

K.-D. Phung and X. Zhang, Time reversal focusing of the initial state for Kirchoff plate,, SIAM J. Appl. Math., 68 (2008), 1535.  doi: 10.1137/070684823.  Google Scholar

[22]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[23]

T. Qin, The global smooth solutions of second order quasilinear hyperbolic equations with dissipative boundary conditions,, Chinese Ann. Math. Ser. B, 9 (1988), 251.   Google Scholar

[24]

J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds,, Comm. Pure Appl. Math., 28 (1975), 501.  doi: 10.1002/cpa.3160280405.  Google Scholar

[25]

M. Reed and B. Simon, Methods of Modern Mathematics Physics II: Fourier Analysis, Self-Adjointness,, Academic Press, (1975).   Google Scholar

[26]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations,, in Proc. Internat. Congress of Mathematicians, (1971), 3008.  doi: 10.1007/978-0-387-89488-1.  Google Scholar

[27]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.  doi: 10.1080/03605309908820684.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[6]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[11]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (137)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]