December  2015, 5(4): 761-780. doi: 10.3934/mcrf.2015.5.761

Stabilization of hyperbolic equations with mixed boundary conditions

1. 

School of Mathematics, Sichuan University, Chengdu 610064, China

Received  July 2014 Revised  January 2015 Published  October 2015

This paper is devoted to study decay properties of solutions to hyperbolic equations in a bounded domain with two types of dissipative mechanisms, i.e. either with a small boundary or an internal damping. Both of the equations are equipped with the mixed boundary conditions. When the Geometric Control Condition on the dissipative region is not satisfied, we show that sufficiently smooth solutions to the equations decay logarithmically, under sharp regularity assumptions on the coefficients, the damping and the boundary of the domain involved in the equations. Our decay results rely on an analysis of the size of resolvent operators for hyperbolic equations on the imaginary axis. To derive this kind of resolvent estimates, we employ global Carleman estimates for elliptic equations with mixed boundary conditions.
Citation: Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control and Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761
References:
[1]

K. Ammari, Dirichlet boundary stabilization of the wave equation, Asymptot. Anal., 30 (2002), 117-130.

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[3]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780. doi: 10.1007/s00028-008-0424-1.

[4]

M. Bellassoued, Decay of solutions of the elastic wave equation with a localized dissipation, Ann. Fac. Sci. Toulouse Math. (6), 12 (2003), 267-301. doi: 10.5802/afst.1049.

[5]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.

[6]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], Acta Math., 180 (1998), 1-29. doi: 10.1007/BF02392877.

[7]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47. doi: 10.4310/MRL.2007.v14.n1.a3.

[8]

H. Christianson, E. Schenck, A. Vasy and J. Wunsch, From resolvent estimates to damped waves, J. Anal. Math., 122 (2014), 14-162. doi: 10.1007/s11854-014-0006-9.

[9]

P. Cornilleau and L. Robbiano, Carleman estimates for the Zaremba boundary condition and stabilization of waves, Amer. J. Math., 136 (2014), 393-444. doi: 10.1353/ajm.2014.0014.

[10]

X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping, in Some Problems on Nonlinear Hyperbolic Equations and Applications, Ser. Contemp. Appl. Math. CAM, 15, Higher Ed. Press, Beijing, 2010, 310-331. doi: 10.1080/03605300903116389.

[11]

X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping, Z. angew. Math. Phys., 62 (2011), 667-680. doi: 10.1007/s00033-010-0113-0.

[12]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, (French) [Dissipative Dynamical Systems and Applications], Masson, Paris, 1991.

[13]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.

[14]

O. Yu. Imanuvilov and M. Yamomoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229-1245. doi: 10.1088/0266-5611/14/5/009.

[15]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54.

[16]

G. Lebeau, Equation des ondes amorties, (French) [Damped wave equation], in Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996, 73-109.

[17]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, (French) [Stabilization of the wave equations by the boundary], Duke Math. J., 86 (1997), 465-491. doi: 10.1215/S0012-7094-97-08614-2.

[18]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4.

[19]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273. doi: 10.1051/cocv/2012008.

[20]

K.-D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations, 240 (2007), 92-124. doi: 10.1016/j.jde.2007.05.016.

[21]

K.-D. Phung and X. Zhang, Time reversal focusing of the initial state for Kirchoff plate, SIAM J. Appl. Math., 68 (2008), 1535-1556. doi: 10.1137/070684823.

[22]

J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.

[23]

T. Qin, The global smooth solutions of second order quasilinear hyperbolic equations with dissipative boundary conditions, Chinese Ann. Math. Ser. B, 9 (1988), 251-269.

[24]

J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm. Pure Appl. Math., 28 (1975), 501-523. doi: 10.1002/cpa.3160280405.

[25]

M. Reed and B. Simon, Methods of Modern Mathematics Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

[26]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, in Proc. Internat. Congress of Mathematicians, Vol. IV, Hyderabad, India, 1971, 3008-3034. doi: 10.1007/978-0-387-89488-1.

[27]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15 (1990), 205-235. doi: 10.1080/03605309908820684.

show all references

References:
[1]

K. Ammari, Dirichlet boundary stabilization of the wave equation, Asymptot. Anal., 30 (2002), 117-130.

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[3]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780. doi: 10.1007/s00028-008-0424-1.

[4]

M. Bellassoued, Decay of solutions of the elastic wave equation with a localized dissipation, Ann. Fac. Sci. Toulouse Math. (6), 12 (2003), 267-301. doi: 10.5802/afst.1049.

[5]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.

[6]

N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], Acta Math., 180 (1998), 1-29. doi: 10.1007/BF02392877.

[7]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47. doi: 10.4310/MRL.2007.v14.n1.a3.

[8]

H. Christianson, E. Schenck, A. Vasy and J. Wunsch, From resolvent estimates to damped waves, J. Anal. Math., 122 (2014), 14-162. doi: 10.1007/s11854-014-0006-9.

[9]

P. Cornilleau and L. Robbiano, Carleman estimates for the Zaremba boundary condition and stabilization of waves, Amer. J. Math., 136 (2014), 393-444. doi: 10.1353/ajm.2014.0014.

[10]

X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping, in Some Problems on Nonlinear Hyperbolic Equations and Applications, Ser. Contemp. Appl. Math. CAM, 15, Higher Ed. Press, Beijing, 2010, 310-331. doi: 10.1080/03605300903116389.

[11]

X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping, Z. angew. Math. Phys., 62 (2011), 667-680. doi: 10.1007/s00033-010-0113-0.

[12]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, (French) [Dissipative Dynamical Systems and Applications], Masson, Paris, 1991.

[13]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.

[14]

O. Yu. Imanuvilov and M. Yamomoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229-1245. doi: 10.1088/0266-5611/14/5/009.

[15]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54.

[16]

G. Lebeau, Equation des ondes amorties, (French) [Damped wave equation], in Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996, 73-109.

[17]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, (French) [Stabilization of the wave equations by the boundary], Duke Math. J., 86 (1997), 465-491. doi: 10.1215/S0012-7094-97-08614-2.

[18]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4.

[19]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273. doi: 10.1051/cocv/2012008.

[20]

K.-D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations, 240 (2007), 92-124. doi: 10.1016/j.jde.2007.05.016.

[21]

K.-D. Phung and X. Zhang, Time reversal focusing of the initial state for Kirchoff plate, SIAM J. Appl. Math., 68 (2008), 1535-1556. doi: 10.1137/070684823.

[22]

J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.

[23]

T. Qin, The global smooth solutions of second order quasilinear hyperbolic equations with dissipative boundary conditions, Chinese Ann. Math. Ser. B, 9 (1988), 251-269.

[24]

J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm. Pure Appl. Math., 28 (1975), 501-523. doi: 10.1002/cpa.3160280405.

[25]

M. Reed and B. Simon, Methods of Modern Mathematics Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

[26]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, in Proc. Internat. Congress of Mathematicians, Vol. IV, Hyderabad, India, 1971, 3008-3034. doi: 10.1007/978-0-387-89488-1.

[27]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15 (1990), 205-235. doi: 10.1080/03605309908820684.

[1]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[2]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, 2022, 16 (5) : 1163-1178. doi: 10.3934/ipi.2022016

[3]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[4]

Yanpeng Jin, Ying Fu. Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2775-2797. doi: 10.3934/cpaa.2022072

[5]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[6]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[7]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[8]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[10]

Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001

[11]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure and Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[12]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[13]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

[14]

Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152

[15]

Xingwen Hao, Yachun Li, Qin Wang. A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations. Kinetic and Related Models, 2014, 7 (3) : 477-492. doi: 10.3934/krm.2014.7.477

[16]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[17]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[18]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[19]

Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221

[20]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (411)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]