Citation: |
[1] |
C. Blanchet-Scalliet, N. El-Karoui, M. Jeanblanc and L. Martellini, Optimal investment and consumption decisions when time-horizon is uncertain, Journal of Mathematical Economics, 44 (2008), 1100-1113.doi: 10.1016/j.jmateco.2007.09.004. |
[2] |
R. Carmona and S. Dayanik, Optimal multiple stopping of linear diffusions, Mathematics of Operations Research, 33 (2008), 446-460.doi: 10.1287/moor.1070.0301. |
[3] |
R. Carmona and N. Touzi, Optimal multiple stopping and valuation of swing options, Mathematical Finance, 18 (2008), 239-268.doi: 10.1111/j.1467-9965.2007.00331.x. |
[4] |
N. Chaidee and K. Neammanee, Berry-Esseen bound for independent random sum via Stein's method, International Mathematical Forum, 3 (2008), 721-738. |
[5] |
N. Chaidee and M. Tuntapthai, Berry-Esseen bounds for random sums of non-i.i.d. random variables, International Mathematical Forum, 4 (2009), 1281-1288. |
[6] |
S. Christensen, A. Irle and S. Jürgens, Optimal multiple stopping with random waiting times, Sequential Analysis: Design Methods and Applications, 32 (2013), 297-318.doi: 10.1080/07474946.2013.803814. |
[7] |
S. Dayanik and I. Karatzas, On the optimal stopping times problem for one-dimensional diffusions, Stochastic Processes and their Applications, 9 (2003), 342-351. |
[8] |
E. B. Dynkin, Markov Processes: Theorems and Problems, 1st edition, Plenum Press, New York, 1969. |
[9] |
R. Elliott, M. Jeanblanc and M. Yor, On models of default risk, Mathematical Finance, 10 (2000), 179-195.doi: 10.1111/1467-9965.00088. |
[10] |
S. W. He, J. G. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, CRC Press, Boca Raton, 1992. |
[11] |
K. Itô and H. P. McKean, Diffusion Processes and Their Sample Paths, 1st edition, Springer-Verlag, Berlin, 1974. |
[12] |
N. Jilani Ben Naouara and F. Trabelsi, Biological application of optimal stopping, Int. J. of Mathematical Modelling and Numerical Optimisation, 5 (2014), 229-264. |
[13] |
N. Jilani Ben Naouara and F. Trabelsi, General undiscounted non-linear optimal multiple stopping of linear diffusions with boundary classification, to appear in Int. J. of Mathematics in Operational Research. |
[14] |
S. Karlin and H. Taylor, A Second Course in Stochastic Processes, Academic press, San Diego, 1981. |
[15] |
M. Kobylanski, M. C. Quenez and E. Rouy, Optimal multiple stopping time problem, The Annals of Applied Probability, 21 (2011), 1365-1399.doi: 10.1214/10-AAP727. |
[16] |
M. Pointier, Pricing Rules Under Asymmetric Information, http://www.math.univ-toulouse.fr/ pontier/squfirenze.pdf. |
[17] |
M. Tomomi and A. Katsunori, Lower bounds for Bruss' odds problem with multiple stopping, preprint, arXiv:1204.5537. |
[18] |
F. Trabelsi, Study of undiscounted non-linear optimal multiple stopping times problems on unbounded intervals, Int. J. Operational Research, 5 (2013), 225-254.doi: 10.1504/IJMOR.2013.052462. |
[19] |
F. Trabelsi and M. B. Zoghlami, On undiscounted non-linear optimal multiple stopping, Int. J. Operational Research, 14 (2012), 387-416.doi: 10.1504/IJOR.2012.047512. |
[20] |
A. B. Zeghal and M. Mnif, Optimal multiple stopping and valuation of swing options in Lévy models, Int. J. Theoretical and Applied Finance, 9 (2006), 1267-1297.doi: 10.1142/S0219024906004037. |