• Previous Article
    Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation
  • MCRF Home
  • This Issue
  • Next Article
    Stochastic recursive optimal control problem with time delay and applications
December  2015, 5(4): 845-858. doi: 10.3934/mcrf.2015.5.845

Relative controllability of linear systems of fractional order with delay

1. 

Departmento de Matemática, Universidad de Santiago-USACH, Casilla 307, Correo-2, Santiago, Chile, Chile

Received  December 2014 Revised  April 2015 Published  October 2015

In this paper we are concerned with the controllability of control systems governed by a fractional differential equations with delay. Using the Mittag-Leffler function we define the concept of solution, and applying the properties of the Laplace transform we characterize the relative or pointwise controllability of the system. Our results generalize those of Kirillova and Churakova, which were established for first order systems. Finally, we show that functionally controllable fractional systems are rare.
Citation: Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845
References:
[1]

R. P. Agarwal, A propos d'une note de M. Pierre Humbert,, C. R. Séances Acad. Sci., 236 (1953), 2031.

[2]

K. Balachandran, J. Kokila and J. J. Trujillo, Relative controllability of fractional dynamical systems with multiple delays in control,, Comput. Math. Appl., 64 (2012), 3037. doi: 10.1016/j.camwa.2012.01.071.

[3]

K. Balachandran and J. Kokila, On the controllability of fractional dynamical systems,, Internat. J. Appl. Math. Comput. Sci., 22 (2012), 523.

[4]

K. Balachandran, J. Y. Park and J. J. Trujillo, Controllability of nonlinear fractional dynamical systems,, Nonlinear Anal., 75 (2012), 1919. doi: 10.1016/j.na.2011.09.042.

[5]

D. Baleanu, J. A. Tenreiro Machado and A. C. J. Luo, Fractional Dynamics and Control,, Springer Science, (2012). doi: 10.1007/978-1-4614-0457-6.

[6]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces,, Eindhoven University of Technology, (2001).

[7]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems,, $2^{nd}$ edition, (2007). doi: 10.1007/978-0-8176-4581-6.

[8]

A. A. Chikrii and I. I. Matichin, Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross,, J. of Automat. Inform. Sci., 40 (2008), 1.

[9]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4224-6.

[10]

A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems,, Comput. Math. Appl., 62 (2011), 1442. doi: 10.1016/j.camwa.2011.03.075.

[11]

K. Diethelm and A. D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoelasticity,, in Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, (1999), 217.

[12]

G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation,, Springer-Verlag, (1974).

[13]

M. Feckan, J.-R. Wang and Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators,, J. Optim. Theory Appl., 156 (2013), 79. doi: 10.1007/s10957-012-0174-7.

[14]

L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators,, Mech. Syst. Signal Processing, 5 (1991), 81. doi: 10.1016/0888-3270(91)90016-X.

[15]

T. L. Guo, Controllability and observability of impulsive fractional linear time-invariant system,, Comput. Math. Appl., 64 (2012), 3171. doi: 10.1016/j.camwa.2012.02.020.

[16]

J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media,, Comput. Methods Appl. Mech. Eng., 167 (1998), 57. doi: 10.1016/S0045-7825(98)00108-X.

[17]

R. Hilfer, Applications of Fractional Calculus in Physics,, World Scientific Publ. Co., (2000). doi: 10.1142/9789812817747.

[18]

T. Kaczorek, Selected Problems of Fractional Systems Theory,, Springer-Verlag, (2011). doi: 10.1007/978-3-642-20502-6.

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006).

[20]

F. M. Kirillova and S. V. Churakova, The controllability problem for linear systems with aftereffect,, Differ. Equ., 3 (1967), 221.

[21]

J. Klamka, Controllability of Dynamical Systems,, Kluwer Academic Publishers, (1991).

[22]

J. T. Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus,, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1140. doi: 10.1016/j.cnsns.2010.05.027.

[23]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity,, Imperial College Press, (2010). doi: 10.1142/9781848163300.

[24]

M. Malek-Zavarei and M. Jamshidi, Time-Delay Systems,, North-Holland, (1987).

[25]

D. Matignon and B. d'Andréa-Novel, Some results on controllability and observability of finite dimensional fractional differential systems,, in CESA'96 IMACS Multiconference, (1996), 952.

[26]

T. Mur and H. R. Henríquez, Controllability of abstract systems of fractional order,, preprint, (2015).

[27]

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado, Advances in Fractional Calculus,, Springer, (2007). doi: 10.1007/978-1-4020-6042-7.

[28]

D. Salamon, Control and Observation of Neutral Systems,, Research Notes in Mathematics, (1984).

[29]

X. Zhang, Some results of linear fractional order time-delay system,, Appl. Math. Comput., 197 (2008), 407. doi: 10.1016/j.amc.2007.07.069.

[30]

H. Zhang, J. Cao and W. Jiang, Controllability criteria for linear fractional differential systems with state delay and impulses,, J. Appl. Math., 2013 (1460).

show all references

References:
[1]

R. P. Agarwal, A propos d'une note de M. Pierre Humbert,, C. R. Séances Acad. Sci., 236 (1953), 2031.

[2]

K. Balachandran, J. Kokila and J. J. Trujillo, Relative controllability of fractional dynamical systems with multiple delays in control,, Comput. Math. Appl., 64 (2012), 3037. doi: 10.1016/j.camwa.2012.01.071.

[3]

K. Balachandran and J. Kokila, On the controllability of fractional dynamical systems,, Internat. J. Appl. Math. Comput. Sci., 22 (2012), 523.

[4]

K. Balachandran, J. Y. Park and J. J. Trujillo, Controllability of nonlinear fractional dynamical systems,, Nonlinear Anal., 75 (2012), 1919. doi: 10.1016/j.na.2011.09.042.

[5]

D. Baleanu, J. A. Tenreiro Machado and A. C. J. Luo, Fractional Dynamics and Control,, Springer Science, (2012). doi: 10.1007/978-1-4614-0457-6.

[6]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces,, Eindhoven University of Technology, (2001).

[7]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems,, $2^{nd}$ edition, (2007). doi: 10.1007/978-0-8176-4581-6.

[8]

A. A. Chikrii and I. I. Matichin, Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross,, J. of Automat. Inform. Sci., 40 (2008), 1.

[9]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4224-6.

[10]

A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems,, Comput. Math. Appl., 62 (2011), 1442. doi: 10.1016/j.camwa.2011.03.075.

[11]

K. Diethelm and A. D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoelasticity,, in Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, (1999), 217.

[12]

G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation,, Springer-Verlag, (1974).

[13]

M. Feckan, J.-R. Wang and Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators,, J. Optim. Theory Appl., 156 (2013), 79. doi: 10.1007/s10957-012-0174-7.

[14]

L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators,, Mech. Syst. Signal Processing, 5 (1991), 81. doi: 10.1016/0888-3270(91)90016-X.

[15]

T. L. Guo, Controllability and observability of impulsive fractional linear time-invariant system,, Comput. Math. Appl., 64 (2012), 3171. doi: 10.1016/j.camwa.2012.02.020.

[16]

J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media,, Comput. Methods Appl. Mech. Eng., 167 (1998), 57. doi: 10.1016/S0045-7825(98)00108-X.

[17]

R. Hilfer, Applications of Fractional Calculus in Physics,, World Scientific Publ. Co., (2000). doi: 10.1142/9789812817747.

[18]

T. Kaczorek, Selected Problems of Fractional Systems Theory,, Springer-Verlag, (2011). doi: 10.1007/978-3-642-20502-6.

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006).

[20]

F. M. Kirillova and S. V. Churakova, The controllability problem for linear systems with aftereffect,, Differ. Equ., 3 (1967), 221.

[21]

J. Klamka, Controllability of Dynamical Systems,, Kluwer Academic Publishers, (1991).

[22]

J. T. Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus,, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1140. doi: 10.1016/j.cnsns.2010.05.027.

[23]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity,, Imperial College Press, (2010). doi: 10.1142/9781848163300.

[24]

M. Malek-Zavarei and M. Jamshidi, Time-Delay Systems,, North-Holland, (1987).

[25]

D. Matignon and B. d'Andréa-Novel, Some results on controllability and observability of finite dimensional fractional differential systems,, in CESA'96 IMACS Multiconference, (1996), 952.

[26]

T. Mur and H. R. Henríquez, Controllability of abstract systems of fractional order,, preprint, (2015).

[27]

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado, Advances in Fractional Calculus,, Springer, (2007). doi: 10.1007/978-1-4020-6042-7.

[28]

D. Salamon, Control and Observation of Neutral Systems,, Research Notes in Mathematics, (1984).

[29]

X. Zhang, Some results of linear fractional order time-delay system,, Appl. Math. Comput., 197 (2008), 407. doi: 10.1016/j.amc.2007.07.069.

[30]

H. Zhang, J. Cao and W. Jiang, Controllability criteria for linear fractional differential systems with state delay and impulses,, J. Appl. Math., 2013 (1460).

[1]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 867-880. doi: 10.3934/dcdss.2020050

[2]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 561-574. doi: 10.3934/dcdss.2020031

[3]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[4]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[5]

Marat Akhmet. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications on Pure & Applied Analysis, 2014, 13 (2) : 929-947. doi: 10.3934/cpaa.2014.13.929

[6]

Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 519-537. doi: 10.3934/dcdss.2020029

[7]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 995-1006. doi: 10.3934/dcdss.2020058

[8]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 609-627. doi: 10.3934/dcdss.2020033

[9]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[10]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[11]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[12]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[13]

Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

[14]

Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157

[15]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[16]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[17]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[18]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

[19]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[20]

Venkatesan Govindaraj, Raju K. George. Controllability of fractional dynamical systems: A functional analytic approach. Mathematical Control & Related Fields, 2017, 7 (4) : 537-562. doi: 10.3934/mcrf.2017020

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]