-
Previous Article
Quantification of the unique continuation property for the nonstationary Stokes problem
- MCRF Home
- This Issue
- Next Article
Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation
1. | Département de Mathématiques, Faculté des Sciences de Monastir , Université de Monastir, 5019 Monastir, Tunisia |
2. | LAGA (UMR 7539), Institut Galilée, Université Paris 13, 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse |
3. | Département de Mathématiques, Université de Cergy-Pontoise, UMR CNRS 8088, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France |
References:
[1] |
C. Bardos, G. Lebeau and J. Rauch, Un exemple d'utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques,, Rend. Sem. Mat. Univ. Politec. Torino (1988), (1988), 11.
|
[2] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.
doi: 10.1137/0330055. |
[3] |
V. Barbu, S. S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations,, SIAM J. Control Optim., 49 (2011), 1454.
doi: 10.1137/100785739. |
[4] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland Publishing, (1992).
|
[5] |
W. C. Chewning, Controllability of the nonlinear wave equation in several space variables,, SIAM J. Control Optim., 14 (1976), 19.
doi: 10.1137/0314002. |
[6] |
J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations,, Commun. Contemp. Math., 8 (2006), 535.
doi: 10.1142/S0219199706002209. |
[7] |
B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface,, Math. Z., 254 (2006), 729.
doi: 10.1007/s00209-006-0005-3. |
[8] |
B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time,, SIAM J. Control Optim., 48 (2009), 521.
doi: 10.1137/070712067. |
[9] |
B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation,, Ann. Sci. École Norm. Sup. (4), 36 (2003), 525.
doi: 10.1016/S0012-9593(03)00021-1. |
[10] |
T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1.
doi: 10.1016/j.anihpc.2006.07.005. |
[11] |
H. O. Fattorini, Local controllability of a nonlinear wave equation,, Math. Systems Theory, 9 (1975), 30.
doi: 10.1007/BF01698123. |
[12] |
D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order,, Proc. Japan Acad., 43 (1967), 82.
doi: 10.3792/pja/1195521686. |
[13] |
X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations,, SIAM J. Control Optim., 46 (2007), 1578.
doi: 10.1137/040610222. |
[14] |
A. Haraux, Two remarks on hyperbolic dissipative problems,, Nonlinear partial differential equations and their applications. Collège de France seminar, 122 (1985), 1983.
|
[15] |
L. Hörmander, The Analysis of Linear Partial Differential Operators. III,, Springer-Verlag, (1994).
|
[16] |
R. Joly and C. Laurent, A note on the semiglobal controllability of the semilinear wave equation,, SIAM J. Control Optim., 52 (2014), 439.
doi: 10.1137/120891174. |
[17] |
C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3,, SIAM J. Math. Anal., 42 (2010), 785.
doi: 10.1137/090749086. |
[18] |
C. Laurent, On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold,, J. Funct. Anal., 260 (2011), 1304.
doi: 10.1016/j.jfa.2010.10.019. |
[19] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969). Google Scholar |
[20] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1,, Masson, (1988).
|
[21] |
G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord,, Duke Math. J., 86 (1997), 465.
doi: 10.1215/S0012-7094-97-08614-2. |
[22] |
L. Li and X. Zhang, Exact controllability for semilinear wave equations,, J. Math. Anal. Appl., 250 (2000), 589.
doi: 10.1006/jmaa.2000.6998. |
[23] |
S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal., 3 (2004), 921.
doi: 10.3934/cpaa.2004.3.921. |
[24] |
X. Zhang, Exact controllability of semilinear evolution systems and its application,, J. Optim. Theory Appl., 107 (2000), 415.
doi: 10.1023/A:1026460831701. |
[25] |
E. Zuazua, Exact controllability for the semilinear wave equation,, J. Math. Pures Appl. (9), 69 (1990), 1.
|
[26] |
E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.
doi: 10.1080/03605309908820684. |
[27] |
E. Zuazua, Exact controllability for semilinear wave equations in one space dimension,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 109.
|
show all references
References:
[1] |
C. Bardos, G. Lebeau and J. Rauch, Un exemple d'utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques,, Rend. Sem. Mat. Univ. Politec. Torino (1988), (1988), 11.
|
[2] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.
doi: 10.1137/0330055. |
[3] |
V. Barbu, S. S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations,, SIAM J. Control Optim., 49 (2011), 1454.
doi: 10.1137/100785739. |
[4] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland Publishing, (1992).
|
[5] |
W. C. Chewning, Controllability of the nonlinear wave equation in several space variables,, SIAM J. Control Optim., 14 (1976), 19.
doi: 10.1137/0314002. |
[6] |
J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations,, Commun. Contemp. Math., 8 (2006), 535.
doi: 10.1142/S0219199706002209. |
[7] |
B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface,, Math. Z., 254 (2006), 729.
doi: 10.1007/s00209-006-0005-3. |
[8] |
B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time,, SIAM J. Control Optim., 48 (2009), 521.
doi: 10.1137/070712067. |
[9] |
B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation,, Ann. Sci. École Norm. Sup. (4), 36 (2003), 525.
doi: 10.1016/S0012-9593(03)00021-1. |
[10] |
T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1.
doi: 10.1016/j.anihpc.2006.07.005. |
[11] |
H. O. Fattorini, Local controllability of a nonlinear wave equation,, Math. Systems Theory, 9 (1975), 30.
doi: 10.1007/BF01698123. |
[12] |
D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order,, Proc. Japan Acad., 43 (1967), 82.
doi: 10.3792/pja/1195521686. |
[13] |
X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations,, SIAM J. Control Optim., 46 (2007), 1578.
doi: 10.1137/040610222. |
[14] |
A. Haraux, Two remarks on hyperbolic dissipative problems,, Nonlinear partial differential equations and their applications. Collège de France seminar, 122 (1985), 1983.
|
[15] |
L. Hörmander, The Analysis of Linear Partial Differential Operators. III,, Springer-Verlag, (1994).
|
[16] |
R. Joly and C. Laurent, A note on the semiglobal controllability of the semilinear wave equation,, SIAM J. Control Optim., 52 (2014), 439.
doi: 10.1137/120891174. |
[17] |
C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3,, SIAM J. Math. Anal., 42 (2010), 785.
doi: 10.1137/090749086. |
[18] |
C. Laurent, On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold,, J. Funct. Anal., 260 (2011), 1304.
doi: 10.1016/j.jfa.2010.10.019. |
[19] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969). Google Scholar |
[20] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1,, Masson, (1988).
|
[21] |
G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord,, Duke Math. J., 86 (1997), 465.
doi: 10.1215/S0012-7094-97-08614-2. |
[22] |
L. Li and X. Zhang, Exact controllability for semilinear wave equations,, J. Math. Anal. Appl., 250 (2000), 589.
doi: 10.1006/jmaa.2000.6998. |
[23] |
S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal., 3 (2004), 921.
doi: 10.3934/cpaa.2004.3.921. |
[24] |
X. Zhang, Exact controllability of semilinear evolution systems and its application,, J. Optim. Theory Appl., 107 (2000), 415.
doi: 10.1023/A:1026460831701. |
[25] |
E. Zuazua, Exact controllability for the semilinear wave equation,, J. Math. Pures Appl. (9), 69 (1990), 1.
|
[26] |
E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.
doi: 10.1080/03605309908820684. |
[27] |
E. Zuazua, Exact controllability for semilinear wave equations in one space dimension,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 109.
|
[1] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[2] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[3] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[4] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[5] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[6] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[7] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[8] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[9] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[10] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[11] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[12] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[13] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[14] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[15] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[16] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[17] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[18] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[19] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[20] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]