\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A relaxation result for state constrained inclusions in infinite dimension

Abstract Related Papers Cited by
  • In this paper we consider a state constrained differential inclusion $\dot x\in \mathbb A x+ F(t,x)$, with $\mathbb A$ generator of a strongly continuous semigroup in an infinite dimensional separable Banach space. Under an ``inward pointing condition'' we prove a relaxation result stating that the set of trajectories lying in the interior of the constraint is dense in the set of constrained trajectories of the convexified inclusion $\dot x\in \mathbb A x+ \overline{\textrm{co}}F(t,x)$. Some applications to control problems involving PDEs are given.
    Mathematics Subject Classification: 34G25, 34K09, 49J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differential Equations, 33 (1979), 201-225.doi: 10.1016/0022-0396(79)90088-3.

    [2]

    V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Boston, New York, 1993.

    [3]

    A. Bensoussan, G. Da Prato, M. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, vol.1, Birkhäuser, Boston, 1992.

    [4]

    A. Bensoussan, G. Da Prato, M. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, vol.2, Birkhäuser, Boston, 1993.doi: 10.1007/978-0-8176-4581-6.

    [5]

    P. Bettiol, A. Bressan and R. B. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counter-examples, SIAM J. Control Optim., 48 (2010), 4664-4679.doi: 10.1137/090769788.

    [6]

    P. Bettiol, H. Frankowska and R. B. Vinter, $L^\infty$ estimates on trajectories confined to a closed subset, J. Differential Equations, 252 (2012), 1912-1933.doi: 10.1016/j.jde.2011.09.007.

    [7]

    L. Boltzmann, Zur theorie der elastischen nachwirkung, Wien. Ber., 70 (1874), 275-306.

    [8]

    L. Boltzmann, Zur theorie der elastischen nachwirkung, Wied. Ann., 5 (1878), 430-432.

    [9]

    P. L. Butzer and H. Berens, Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967.doi: 10.1007/978-3-642-64981-3.

    [10]

    P. Cannarsa, H. Frankowska and E. M. Marchini, On Bolza optimal control problems with constraints, Discrete Contin. Dyn. Syst., 11 (2009), 629-653.doi: 10.3934/dcdsb.2009.11.629.

    [11]

    P. Cannarsa, H. Frankowska and E. M. Marchini, Optimal control for evolution equations with memory, J. Evol. Equ., 13 (2013), 197-227.

    [12]

    F. H. Clarke, Optimization and Nonsmooth Analysis, SIAM, Philadelphia, 1990.doi: 10.1137/1.9781611971309.

    [13]

    C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.

    [14]

    H. O. Fattorini, Infinite-dimensional Optimization and Control Theory, Cambridge University Press, Cambridge, 1999.doi: 10.1017/CBO9780511574795.

    [15]

    H. Frankowska, A priori estimates for operational differential inclusions, J. Differential Equations, 84 (1990), 100-128.doi: 10.1016/0022-0396(90)90129-D.

    [16]

    H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints, Calc. Var. Partial Differential Equations, 46 (2013), 725-747.doi: 10.1007/s00526-012-0501-8.

    [17]

    H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints, Nonlinear Differ. Equ. Appl., 20 (2013), 361-383.doi: 10.1007/s00030-012-0183-0.

    [18]

    H. Frankowska and F. Rampazzo, Filippov's and Filippov-Wazewski's theorems on closed domains, J. Differential Equations, 161 (2000), 449-478.doi: 10.1006/jdeq.2000.3711.

    [19]

    H. Frankowska and R. B. Vinter, Existence of neighbouring feasible trajectories: Applications to dynamic programming for state constrained optimal control problems, J. Optim. Theory Appl., 104 (2000), 21-40.doi: 10.1023/A:1004668504089.

    [20]

    A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover, New York, 1975.

    [21]

    I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Cambridge University Press, Cambridge, 2000.

    [22]

    X. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems, Birkhäuser, Boston, 1995.doi: 10.1007/978-1-4612-4260-4.

    [23]

    R. H. Martin, Jr., Invariant sets for perturbed semigroups of linear operators, Ann. Mat. Pura Appl., 105 (1975), 221-239.doi: 10.1007/BF02414931.

    [24]

    J. V. Outrata and Z. Schindler, An augmented Lagrangian method for a class of convex continuous optimal control problems, Problems Control Inform. Theory, 10 (1981), 67-81.

    [25]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [26]

    D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Functional Anal., 91 (1990), 312-345.doi: 10.1016/0022-1236(90)90147-D.

    [27]

    J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.

    [28]

    H. M. Soner, Optimal control with state-space constraints, SIAM J. Control Optim., 24 (1986), 552-561.doi: 10.1137/0324032.

    [29]

    R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.doi: 10.1007/978-1-4612-0645-3.

    [30]

    V. Volterra, Sur les équations intégro-différentielles et leurs applications, Acta Math., 35 (1912), 295-356.doi: 10.1007/BF02418820.

    [31]

    V. Volterra, Leçons sur les Fonctions De Lignes, Gauthier-Villars, Paris, 1913.

    [32]

    A. P. Wierzbicki and S. Kurcyusz, Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space, SIAM J. Control Optim., 15 (1977), 25-56.doi: 10.1137/0315003.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return