\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Counting function for interior transmission eigenvalues

Abstract Related Papers Cited by
  • In this paper we give results on the counting function associated with the interior transmission eigenvalues. For a complex refraction index we estimate of the counting function by $Ct^{n}$. In the case where the refraction index is positive we give an equivalent of the counting function.
    Mathematics Subject Classification: Primary: 35P10, 35P20, 35J57.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, No. 2, 1965.

    [2]

    F. Cakoni, M. Çayören and D. Colton, Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, 24 (2008), 065016, 15pp.doi: 10.1088/0266-5611/24/6/065016.

    [3]

    F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2010), 145-162.doi: 10.1137/090754637.

    [4]

    F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.doi: 10.1137/090769338.

    [5]

    F. Cakoni and H. Haddar, Transmission Eigenvalues in Inverse Scattering Theory, in Inverse Problems and Applications: Inside Out II, MSRI Publication, 60 (2013), 529-580.

    [6]

    H. CartanThéorie Élémentaire Des Fonctions Analytiques, Hermann.

    [7]

    D. Colton, A. Kirsch and L. Päivärinta, Far-field patterns for acoustic waves in an inhomogeneous medium, SIAM J. Math. Anal., 20 (1989), 1472-1483.doi: 10.1137/0520096.

    [8]

    D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93, Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-662-02835-3.

    [9]

    M. Dimassi and V. Petkov, Upper bound for the counting function of interior transmission eigenvalues, preprint, arXiv:1308.2594.

    [10]

    M. Faierman, Transmission eigenvalues for parameter-elliptic boundary problems, preprint.

    [11]

    M. Hitrik, K. Krupchyk, P. Ola Petri and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, SIAM J. Math. Anal., 42 (2010), 2965-2986.doi: 10.1137/100793748.

    [12]

    M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for elliptic operators, SIAM J. Math. Anal., 43 (2011), 2630-2639.doi: 10.1137/110827867.

    [13]

    M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.doi: 10.4310/MRL.2011.v18.n2.a7.

    [14]

    J. Karamata, Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze, Math. Z., 33 (1931), 294-299.doi: 10.1007/BF01174355.

    [15]

    E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.doi: 10.1137/11084738X.

    [16]

    E. Lakshtanov and B. Vainberg, Remarks on interior transmission eigenvalues, Weyl formula and branching billiards, J. Phys. A: Math. Theor, 45 (2012), 125202, 10pp.doi: 10.1088/1751-8113/45/12/125202.

    [17]

    E. Lakshtanov and B. Vainberg, Bounds on positive interior transmission eigenvalues, Inverse Problems, 28 (2012), 105005, 13pp.doi: 10.1088/0266-5611/28/10/105005.

    [18]

    E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104003, 19pp.doi: 10.1088/0266-5611/29/10/104003.

    [19]

    P. Malliavin, Un théorème taubérien relié aux estimations de valeurs propres, Séminaire Jean Leray, (1962-1963), 224-231, Available from: http://www.numdam.org/item?id=SJL_1962-1963____224_0

    [20]

    L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753.doi: 10.1137/070697525.

    [21]

    H. Pham and P. Stefanov, Weyl asymptotics of the transmission eigenvalues for a constant index of refraction, Inverse Problems and Imaging, 8 (2014), 795-810.doi: 10.3934/ipi.2014.8.795.

    [22]

    L. Robbiano, Spectral analysis on interior transmission eigenvalues, Inverse Problems, 29 (2013), 104001, 28pp.doi: 10.1088/0266-5611/29/10/104001.

    [23]

    J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.doi: 10.1137/110836420.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(152) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return