Citation: |
[1] |
S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, No. 2, 1965. |
[2] |
F. Cakoni, M. Çayören and D. Colton, Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, 24 (2008), 065016, 15pp.doi: 10.1088/0266-5611/24/6/065016. |
[3] |
F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2010), 145-162.doi: 10.1137/090754637. |
[4] |
F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.doi: 10.1137/090769338. |
[5] |
F. Cakoni and H. Haddar, Transmission Eigenvalues in Inverse Scattering Theory, in Inverse Problems and Applications: Inside Out II, MSRI Publication, 60 (2013), 529-580. |
[6] |
H. Cartan, Théorie Élémentaire Des Fonctions Analytiques, Hermann. |
[7] |
D. Colton, A. Kirsch and L. Päivärinta, Far-field patterns for acoustic waves in an inhomogeneous medium, SIAM J. Math. Anal., 20 (1989), 1472-1483.doi: 10.1137/0520096. |
[8] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93, Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-662-02835-3. |
[9] |
M. Dimassi and V. Petkov, Upper bound for the counting function of interior transmission eigenvalues, preprint, arXiv:1308.2594. |
[10] |
M. Faierman, Transmission eigenvalues for parameter-elliptic boundary problems, preprint. |
[11] |
M. Hitrik, K. Krupchyk, P. Ola Petri and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, SIAM J. Math. Anal., 42 (2010), 2965-2986.doi: 10.1137/100793748. |
[12] |
M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for elliptic operators, SIAM J. Math. Anal., 43 (2011), 2630-2639.doi: 10.1137/110827867. |
[13] |
M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.doi: 10.4310/MRL.2011.v18.n2.a7. |
[14] |
J. Karamata, Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze, Math. Z., 33 (1931), 294-299.doi: 10.1007/BF01174355. |
[15] |
E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.doi: 10.1137/11084738X. |
[16] |
E. Lakshtanov and B. Vainberg, Remarks on interior transmission eigenvalues, Weyl formula and branching billiards, J. Phys. A: Math. Theor, 45 (2012), 125202, 10pp.doi: 10.1088/1751-8113/45/12/125202. |
[17] |
E. Lakshtanov and B. Vainberg, Bounds on positive interior transmission eigenvalues, Inverse Problems, 28 (2012), 105005, 13pp.doi: 10.1088/0266-5611/28/10/105005. |
[18] |
E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104003, 19pp.doi: 10.1088/0266-5611/29/10/104003. |
[19] |
P. Malliavin, Un théorème taubérien relié aux estimations de valeurs propres, Séminaire Jean Leray, (1962-1963), 224-231, Available from: http://www.numdam.org/item?id=SJL_1962-1963____224_0 |
[20] |
L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753.doi: 10.1137/070697525. |
[21] |
H. Pham and P. Stefanov, Weyl asymptotics of the transmission eigenvalues for a constant index of refraction, Inverse Problems and Imaging, 8 (2014), 795-810.doi: 10.3934/ipi.2014.8.795. |
[22] |
L. Robbiano, Spectral analysis on interior transmission eigenvalues, Inverse Problems, 29 (2013), 104001, 28pp.doi: 10.1088/0266-5611/29/10/104001. |
[23] |
J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.doi: 10.1137/110836420. |