March  2016, 6(1): 27-52. doi: 10.3934/mcrf.2016.6.27

Quantification of the unique continuation property for the nonstationary Stokes problem

1. 

Sorbonne Universités, UPMC Paris 06, UMR 7598, LJLL, F-75005, Paris, France

Received  December 2014 Revised  September 2015 Published  January 2016

The purpose of this work is to establish stability estimates for the unique continuation property of the nonstationary Stokes problem. These estimates hold without prescribing boundary conditions and are of logarithmic type. They are obtained thanks to Carleman estimates for parabolic and elliptic equations. Then, these estimates are applied to an inverse problem where we want to identify a Robin coefficient defined on some part of the boundary from measurements available on another part of the boundary.
Citation: Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27
References:
[1]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755.   Google Scholar

[2]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123004.  Google Scholar

[3]

G. Alessandrini and E. Sincich, Detecting nonlinear corrosion by electrostatic measurements,, Appl. Anal., 85 (2006), 107.  doi: 10.1080/00036810500277702.  Google Scholar

[4]

L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract,, Math. Models Methods Appl. Sci., 20 (2010), 59.  doi: 10.1142/S0218202510004155.  Google Scholar

[5]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/12/125015.  Google Scholar

[6]

M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging,, J. Math. Anal. Appl., 343 (2008), 328.  doi: 10.1016/j.jmaa.2008.01.066.  Google Scholar

[7]

M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude,, Math. Methods Appl. Sci., 36 (2013), 2429.  doi: 10.1002/mma.2762.  Google Scholar

[8]

M. Bellassoued, O. Y. Imanuvilov and M. Yamamoto, Carleman estimates for the navier-stokes equations and an application to a lateral cauchy problem,, preprint., ().   Google Scholar

[9]

M. Boulakia, A. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system,, Math. Control Relat. Fields, 3 (2013), 21.  doi: 10.3934/mcrf.2013.3.21.  Google Scholar

[10]

M. Boulakia, A. Egloffe and C. Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/11/115001.  Google Scholar

[11]

L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: The case of Lipschitz domains,, Appl. Anal., 89 (2010), 1745.  doi: 10.1080/00036810903393809.  Google Scholar

[12]

F. Boyer and P. Fabrie, Éléments D'analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles, volume 52 of Mathématiques & Applications (Berlin) [Mathematics & Applications],, Springer-Verlag, (2006).  doi: 10.1007/3-540-29819-3.  Google Scholar

[13]

S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems,, Inverse Problems, 20 (2004), 47.  doi: 10.1088/0266-5611/20/1/003.  Google Scholar

[14]

A.-C. Egloffe, Étude de Quelques Problèmes Inverses Pour le Système de Stokes. Application Aux Poumons,, PhD thesis, (2012).   Google Scholar

[15]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes,, Comm. Partial Differential Equations, 21 (1996), 573.  doi: 10.1080/03605309608821198.  Google Scholar

[16]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system,, J. Math. Pures Appl. (9), 83 (2004), 1501.  doi: 10.1016/j.matpur.2004.02.010.  Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, volume 34 of Lecture Notes Series,, Seoul National University Research Institute of Mathematics Global Analysis Research Center, (1996).   Google Scholar

[18]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics. Springer-Verlag, (2001).   Google Scholar

[19]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III, volume 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (1985).   Google Scholar

[20]

M. Ignatova and I. Kukavica, Strong unique continuation for the Navier-Stokes equation with non-analytic forcing,, J. Dynam. Differential Equations, 25 (2013), 1.  doi: 10.1007/s10884-012-9282-1.  Google Scholar

[21]

O. Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations,, ESAIM Control Optim. Calc. Var., 3 (1998), 97.  doi: 10.1051/cocv:1998104.  Google Scholar

[22]

O. Y. Imanuvilov and M. Yamamoto, Equivalence of two inverse boundary value problems for the navier-stokes equations,, , (2015).   Google Scholar

[23]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound,, Comm. Pure Appl. Math., 13 (1960), 551.  doi: 10.1002/cpa.3160130402.  Google Scholar

[24]

E. M. Landis, Some questions in the qualitative theory of elliptic and parabolic equations,, Amer. Math. Soc. Transl. (2), 20 (1962), 173.   Google Scholar

[25]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712.  doi: 10.1051/cocv/2011168.  Google Scholar

[26]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[27]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system,, Discrete Contin. Dyn. Syst., 28 (2010), 1273.  doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[28]

K.-D. Phung, Remarques sur l'observabilité pour l'équation de laplace,, ESAIM: Control, 9 (2003), 621.  doi: 10.1051/cocv:2003030.  Google Scholar

[29]

A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations,, Multiscale Model. Simul., 1 (2003), 173.  doi: 10.1137/S1540345902408482.  Google Scholar

[30]

L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques,, Comm. Partial Differential Equations, 16 (1991), 789.  doi: 10.1080/03605309108820778.  Google Scholar

[31]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations,, J. Differential Equations, 66 (1987), 118.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[32]

C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159.  doi: 10.1007/BF02387373.  Google Scholar

[33]

S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/2/023001.  Google Scholar

[34]

I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3776.  doi: 10.1016/j.cma.2005.04.014.  Google Scholar

[35]

M. Yamamoto, Carleman estimates for parabolic equations and applications,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

show all references

References:
[1]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755.   Google Scholar

[2]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123004.  Google Scholar

[3]

G. Alessandrini and E. Sincich, Detecting nonlinear corrosion by electrostatic measurements,, Appl. Anal., 85 (2006), 107.  doi: 10.1080/00036810500277702.  Google Scholar

[4]

L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract,, Math. Models Methods Appl. Sci., 20 (2010), 59.  doi: 10.1142/S0218202510004155.  Google Scholar

[5]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/12/125015.  Google Scholar

[6]

M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging,, J. Math. Anal. Appl., 343 (2008), 328.  doi: 10.1016/j.jmaa.2008.01.066.  Google Scholar

[7]

M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude,, Math. Methods Appl. Sci., 36 (2013), 2429.  doi: 10.1002/mma.2762.  Google Scholar

[8]

M. Bellassoued, O. Y. Imanuvilov and M. Yamamoto, Carleman estimates for the navier-stokes equations and an application to a lateral cauchy problem,, preprint., ().   Google Scholar

[9]

M. Boulakia, A. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system,, Math. Control Relat. Fields, 3 (2013), 21.  doi: 10.3934/mcrf.2013.3.21.  Google Scholar

[10]

M. Boulakia, A. Egloffe and C. Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/11/115001.  Google Scholar

[11]

L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: The case of Lipschitz domains,, Appl. Anal., 89 (2010), 1745.  doi: 10.1080/00036810903393809.  Google Scholar

[12]

F. Boyer and P. Fabrie, Éléments D'analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles, volume 52 of Mathématiques & Applications (Berlin) [Mathematics & Applications],, Springer-Verlag, (2006).  doi: 10.1007/3-540-29819-3.  Google Scholar

[13]

S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems,, Inverse Problems, 20 (2004), 47.  doi: 10.1088/0266-5611/20/1/003.  Google Scholar

[14]

A.-C. Egloffe, Étude de Quelques Problèmes Inverses Pour le Système de Stokes. Application Aux Poumons,, PhD thesis, (2012).   Google Scholar

[15]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes,, Comm. Partial Differential Equations, 21 (1996), 573.  doi: 10.1080/03605309608821198.  Google Scholar

[16]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system,, J. Math. Pures Appl. (9), 83 (2004), 1501.  doi: 10.1016/j.matpur.2004.02.010.  Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, volume 34 of Lecture Notes Series,, Seoul National University Research Institute of Mathematics Global Analysis Research Center, (1996).   Google Scholar

[18]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics. Springer-Verlag, (2001).   Google Scholar

[19]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III, volume 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (1985).   Google Scholar

[20]

M. Ignatova and I. Kukavica, Strong unique continuation for the Navier-Stokes equation with non-analytic forcing,, J. Dynam. Differential Equations, 25 (2013), 1.  doi: 10.1007/s10884-012-9282-1.  Google Scholar

[21]

O. Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations,, ESAIM Control Optim. Calc. Var., 3 (1998), 97.  doi: 10.1051/cocv:1998104.  Google Scholar

[22]

O. Y. Imanuvilov and M. Yamamoto, Equivalence of two inverse boundary value problems for the navier-stokes equations,, , (2015).   Google Scholar

[23]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound,, Comm. Pure Appl. Math., 13 (1960), 551.  doi: 10.1002/cpa.3160130402.  Google Scholar

[24]

E. M. Landis, Some questions in the qualitative theory of elliptic and parabolic equations,, Amer. Math. Soc. Transl. (2), 20 (1962), 173.   Google Scholar

[25]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712.  doi: 10.1051/cocv/2011168.  Google Scholar

[26]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[27]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system,, Discrete Contin. Dyn. Syst., 28 (2010), 1273.  doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[28]

K.-D. Phung, Remarques sur l'observabilité pour l'équation de laplace,, ESAIM: Control, 9 (2003), 621.  doi: 10.1051/cocv:2003030.  Google Scholar

[29]

A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations,, Multiscale Model. Simul., 1 (2003), 173.  doi: 10.1137/S1540345902408482.  Google Scholar

[30]

L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques,, Comm. Partial Differential Equations, 16 (1991), 789.  doi: 10.1080/03605309108820778.  Google Scholar

[31]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations,, J. Differential Equations, 66 (1987), 118.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[32]

C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159.  doi: 10.1007/BF02387373.  Google Scholar

[33]

S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/2/023001.  Google Scholar

[34]

I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3776.  doi: 10.1016/j.cma.2005.04.014.  Google Scholar

[35]

M. Yamamoto, Carleman estimates for parabolic equations and applications,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

[1]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[2]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[3]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[4]

Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645

[5]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[6]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262

[7]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[8]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[9]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[10]

Shaojie Yang, Tianzhou Xu. Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 329-341. doi: 10.3934/dcds.2018016

[11]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[12]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[13]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[14]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[15]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[16]

Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen. Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 93-115. doi: 10.3934/mbe.2009.6.93

[17]

Houssein Ayoub, Bedreddine Ainseba, Michel Langlais, Rodolphe Thiébaut. Parameters identification for a model of T cell homeostasis. Mathematical Biosciences & Engineering, 2015, 12 (5) : 917-936. doi: 10.3934/mbe.2015.12.917

[18]

Rinaldo M. Colombo, Andrea Corli. Dynamic parameters identification in traffic flow modeling. Conference Publications, 2005, 2005 (Special) : 190-199. doi: 10.3934/proc.2005.2005.190

[19]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[20]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]