March  2016, 6(1): 27-52. doi: 10.3934/mcrf.2016.6.27

Quantification of the unique continuation property for the nonstationary Stokes problem

1. 

Sorbonne Universités, UPMC Paris 06, UMR 7598, LJLL, F-75005, Paris, France

Received  December 2014 Revised  September 2015 Published  January 2016

The purpose of this work is to establish stability estimates for the unique continuation property of the nonstationary Stokes problem. These estimates hold without prescribing boundary conditions and are of logarithmic type. They are obtained thanks to Carleman estimates for parabolic and elliptic equations. Then, these estimates are applied to an inverse problem where we want to identify a Robin coefficient defined on some part of the boundary from measurements available on another part of the boundary.
Citation: Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27
References:
[1]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755.   Google Scholar

[2]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123004.  Google Scholar

[3]

G. Alessandrini and E. Sincich, Detecting nonlinear corrosion by electrostatic measurements,, Appl. Anal., 85 (2006), 107.  doi: 10.1080/00036810500277702.  Google Scholar

[4]

L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract,, Math. Models Methods Appl. Sci., 20 (2010), 59.  doi: 10.1142/S0218202510004155.  Google Scholar

[5]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/12/125015.  Google Scholar

[6]

M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging,, J. Math. Anal. Appl., 343 (2008), 328.  doi: 10.1016/j.jmaa.2008.01.066.  Google Scholar

[7]

M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude,, Math. Methods Appl. Sci., 36 (2013), 2429.  doi: 10.1002/mma.2762.  Google Scholar

[8]

M. Bellassoued, O. Y. Imanuvilov and M. Yamamoto, Carleman estimates for the navier-stokes equations and an application to a lateral cauchy problem,, preprint., ().   Google Scholar

[9]

M. Boulakia, A. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system,, Math. Control Relat. Fields, 3 (2013), 21.  doi: 10.3934/mcrf.2013.3.21.  Google Scholar

[10]

M. Boulakia, A. Egloffe and C. Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/11/115001.  Google Scholar

[11]

L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: The case of Lipschitz domains,, Appl. Anal., 89 (2010), 1745.  doi: 10.1080/00036810903393809.  Google Scholar

[12]

F. Boyer and P. Fabrie, Éléments D'analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles, volume 52 of Mathématiques & Applications (Berlin) [Mathematics & Applications],, Springer-Verlag, (2006).  doi: 10.1007/3-540-29819-3.  Google Scholar

[13]

S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems,, Inverse Problems, 20 (2004), 47.  doi: 10.1088/0266-5611/20/1/003.  Google Scholar

[14]

A.-C. Egloffe, Étude de Quelques Problèmes Inverses Pour le Système de Stokes. Application Aux Poumons,, PhD thesis, (2012).   Google Scholar

[15]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes,, Comm. Partial Differential Equations, 21 (1996), 573.  doi: 10.1080/03605309608821198.  Google Scholar

[16]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system,, J. Math. Pures Appl. (9), 83 (2004), 1501.  doi: 10.1016/j.matpur.2004.02.010.  Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, volume 34 of Lecture Notes Series,, Seoul National University Research Institute of Mathematics Global Analysis Research Center, (1996).   Google Scholar

[18]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics. Springer-Verlag, (2001).   Google Scholar

[19]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III, volume 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (1985).   Google Scholar

[20]

M. Ignatova and I. Kukavica, Strong unique continuation for the Navier-Stokes equation with non-analytic forcing,, J. Dynam. Differential Equations, 25 (2013), 1.  doi: 10.1007/s10884-012-9282-1.  Google Scholar

[21]

O. Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations,, ESAIM Control Optim. Calc. Var., 3 (1998), 97.  doi: 10.1051/cocv:1998104.  Google Scholar

[22]

O. Y. Imanuvilov and M. Yamamoto, Equivalence of two inverse boundary value problems for the navier-stokes equations,, , (2015).   Google Scholar

[23]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound,, Comm. Pure Appl. Math., 13 (1960), 551.  doi: 10.1002/cpa.3160130402.  Google Scholar

[24]

E. M. Landis, Some questions in the qualitative theory of elliptic and parabolic equations,, Amer. Math. Soc. Transl. (2), 20 (1962), 173.   Google Scholar

[25]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712.  doi: 10.1051/cocv/2011168.  Google Scholar

[26]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[27]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system,, Discrete Contin. Dyn. Syst., 28 (2010), 1273.  doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[28]

K.-D. Phung, Remarques sur l'observabilité pour l'équation de laplace,, ESAIM: Control, 9 (2003), 621.  doi: 10.1051/cocv:2003030.  Google Scholar

[29]

A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations,, Multiscale Model. Simul., 1 (2003), 173.  doi: 10.1137/S1540345902408482.  Google Scholar

[30]

L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques,, Comm. Partial Differential Equations, 16 (1991), 789.  doi: 10.1080/03605309108820778.  Google Scholar

[31]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations,, J. Differential Equations, 66 (1987), 118.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[32]

C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159.  doi: 10.1007/BF02387373.  Google Scholar

[33]

S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/2/023001.  Google Scholar

[34]

I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3776.  doi: 10.1016/j.cma.2005.04.014.  Google Scholar

[35]

M. Yamamoto, Carleman estimates for parabolic equations and applications,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

show all references

References:
[1]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755.   Google Scholar

[2]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123004.  Google Scholar

[3]

G. Alessandrini and E. Sincich, Detecting nonlinear corrosion by electrostatic measurements,, Appl. Anal., 85 (2006), 107.  doi: 10.1080/00036810500277702.  Google Scholar

[4]

L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract,, Math. Models Methods Appl. Sci., 20 (2010), 59.  doi: 10.1142/S0218202510004155.  Google Scholar

[5]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/12/125015.  Google Scholar

[6]

M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging,, J. Math. Anal. Appl., 343 (2008), 328.  doi: 10.1016/j.jmaa.2008.01.066.  Google Scholar

[7]

M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude,, Math. Methods Appl. Sci., 36 (2013), 2429.  doi: 10.1002/mma.2762.  Google Scholar

[8]

M. Bellassoued, O. Y. Imanuvilov and M. Yamamoto, Carleman estimates for the navier-stokes equations and an application to a lateral cauchy problem,, preprint., ().   Google Scholar

[9]

M. Boulakia, A. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system,, Math. Control Relat. Fields, 3 (2013), 21.  doi: 10.3934/mcrf.2013.3.21.  Google Scholar

[10]

M. Boulakia, A. Egloffe and C. Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/11/115001.  Google Scholar

[11]

L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: The case of Lipschitz domains,, Appl. Anal., 89 (2010), 1745.  doi: 10.1080/00036810903393809.  Google Scholar

[12]

F. Boyer and P. Fabrie, Éléments D'analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles, volume 52 of Mathématiques & Applications (Berlin) [Mathematics & Applications],, Springer-Verlag, (2006).  doi: 10.1007/3-540-29819-3.  Google Scholar

[13]

S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems,, Inverse Problems, 20 (2004), 47.  doi: 10.1088/0266-5611/20/1/003.  Google Scholar

[14]

A.-C. Egloffe, Étude de Quelques Problèmes Inverses Pour le Système de Stokes. Application Aux Poumons,, PhD thesis, (2012).   Google Scholar

[15]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes,, Comm. Partial Differential Equations, 21 (1996), 573.  doi: 10.1080/03605309608821198.  Google Scholar

[16]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system,, J. Math. Pures Appl. (9), 83 (2004), 1501.  doi: 10.1016/j.matpur.2004.02.010.  Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, volume 34 of Lecture Notes Series,, Seoul National University Research Institute of Mathematics Global Analysis Research Center, (1996).   Google Scholar

[18]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics. Springer-Verlag, (2001).   Google Scholar

[19]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III, volume 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (1985).   Google Scholar

[20]

M. Ignatova and I. Kukavica, Strong unique continuation for the Navier-Stokes equation with non-analytic forcing,, J. Dynam. Differential Equations, 25 (2013), 1.  doi: 10.1007/s10884-012-9282-1.  Google Scholar

[21]

O. Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations,, ESAIM Control Optim. Calc. Var., 3 (1998), 97.  doi: 10.1051/cocv:1998104.  Google Scholar

[22]

O. Y. Imanuvilov and M. Yamamoto, Equivalence of two inverse boundary value problems for the navier-stokes equations,, , (2015).   Google Scholar

[23]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound,, Comm. Pure Appl. Math., 13 (1960), 551.  doi: 10.1002/cpa.3160130402.  Google Scholar

[24]

E. M. Landis, Some questions in the qualitative theory of elliptic and parabolic equations,, Amer. Math. Soc. Transl. (2), 20 (1962), 173.   Google Scholar

[25]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712.  doi: 10.1051/cocv/2011168.  Google Scholar

[26]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[27]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system,, Discrete Contin. Dyn. Syst., 28 (2010), 1273.  doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[28]

K.-D. Phung, Remarques sur l'observabilité pour l'équation de laplace,, ESAIM: Control, 9 (2003), 621.  doi: 10.1051/cocv:2003030.  Google Scholar

[29]

A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations,, Multiscale Model. Simul., 1 (2003), 173.  doi: 10.1137/S1540345902408482.  Google Scholar

[30]

L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques,, Comm. Partial Differential Equations, 16 (1991), 789.  doi: 10.1080/03605309108820778.  Google Scholar

[31]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations,, J. Differential Equations, 66 (1987), 118.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[32]

C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159.  doi: 10.1007/BF02387373.  Google Scholar

[33]

S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/2/023001.  Google Scholar

[34]

I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries,, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3776.  doi: 10.1016/j.cma.2005.04.014.  Google Scholar

[35]

M. Yamamoto, Carleman estimates for parabolic equations and applications,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[3]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[7]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[15]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[16]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]