Citation: |
[1] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. |
[2] |
V. Barbu, M. L. Bernardi, P. Colli and G. Gilardi, Optimal control problems of phase relaxation models, J. Optim. Theory Appl., 109 (2001), 557-585.doi: 10.1023/A:1017563604922. |
[3] |
K. N. Blazakis, A. Madzvamuse, C. C. Reyes-Aldasoro, V. Styles and C. Venkataraman, Whole cell tracking through the optimal control of geometric evolution laws, J. Comput. Phys., 297 (2015), 495-514.doi: 10.1016/j.jcp.2015.05.014. |
[4] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. I. Mathematical Analysis, European J. Appl. Math., 2 (1991), 233-280.doi: 10.1017/S095679250000053X. |
[5] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical Analysis, European J. Appl. Math., 3 (1992), 147-179.doi: 10.1017/S0956792500000759. |
[6] |
J. L. Boldrini, B. M. C. Caretta and E. Fernández-Cara, Some optimal control problems for a two-phase field model of solidification, Rev. Mat. Complut., 23 (2010), 49-75.doi: 10.1007/s13163-009-0012-0. |
[7] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973. |
[8] |
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.doi: 10.1007/978-1-4612-4048-8. |
[9] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.doi: 10.1007/BF00254827. |
[10] |
L. Calatroni and P. Colli, Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013), 12-27.doi: 10.1016/j.na.2012.11.010. |
[11] |
L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596. |
[12] |
P. Colli, M. H. Farshbaf-Shaker and J. Sprekels, A deep quench approach to the optimal control of an Allen-Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), 1-24.doi: 10.1007/s00245-014-9250-8. |
[13] |
P. Colli, G. Gilardi and G. Marinoschi, A boundary control problem for a possibly singular phase field system with dynamic boundary conditions, J. Math. Anal. Appl., 434 (2016), 432-463, (see also preprint arXiv:1501.04517 [math.AP] (2015), pp. 1-32).doi: 10.1016/j.jmaa.2015.09.011. |
[14] |
P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Optimal control for a conserved phase field system with general potentials, in preparation. |
[15] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn, 24 (2012), 437-459.doi: 10.1007/s00161-011-0215-8. |
[16] |
P. Colli, G. Gilardi and J. Sprekels, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80 (2012), 119-149.doi: 10.1007/s00032-012-0181-z. |
[17] |
P. Colli, G. Gilardi and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325, (see also arXiv:1503.03213 [math.AP] (2015), pp. 1-18).doi: 10.1515/anona-2015-0035. |
[18] |
P. Colli, G. Marinoschi and E. Rocca, Sharp interface control in a Penrose-Fife model, ESAIM Control Optim. Calc. Var., (see also preprint arXiv:1403.4446 [math.AP] (2014), pp. 1-33).doi: 10.1051/cocv/2015014. |
[19] |
P. Colli and J. Sprekels, Optimal control of an Allen-Cahn equation with singular potentials and dynamic boundary condition, SIAM J. Control Optim., 53 (2015), 213-234.doi: 10.1137/120902422. |
[20] |
M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.doi: 10.1007/BF01385847. |
[21] |
A. Damlamian, N. Kenmochi and N. Sato, Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation, Nonlinear Anal., 23 (1994), 115-142.doi: 10.1016/0362-546X(94)90255-0. |
[22] |
C. M. Elliott and S. Zheng, Global existence and stability of solutions to the phase-field equations, in Free boundary problems, Internat. Ser. Numer. Math., Birkhäuser Verlag, Basel, 95 (1990), 46-58. |
[23] |
M. H. Farshbaf-Shaker, A penalty approach to optimal control of Allen-Cahn variational inequalities: MPEC-view, Numer. Funct. Anal. Optim., 33 (2012), 1321-1349.doi: 10.1080/01630563.2012.672354. |
[24] |
M. H. Farshbaf-Shaker and C. Hecht, Optimal control of elastic vector-valued Allen-Cahn variational inequalities, WIAS Preprint, 1858 (2013), 1-20. |
[25] |
G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881-912.doi: 10.3934/cpaa.2009.8.881. |
[26] |
G. Gilardi, A. Miranville and G. Schimperna, Long-time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712.doi: 10.1007/s11401-010-0602-7. |
[27] |
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.doi: 10.3934/dcds.2010.28.67. |
[28] |
M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.doi: 10.4171/ZAA/1277. |
[29] |
K.-H. Hoffmann and L. S. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. Optim., 13 (1992), 11-27.doi: 10.1080/01630569208816458. |
[30] |
K.-H. Hoffmann, N. Kenmochi, M. Kubo and N. Yamazaki, Optimal control problems for models of phase-field type with hysteresis of play operator, Adv. Math. Sci. Appl., 17 (2007), 305-336. |
[31] |
N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequalities arising phase change problems, Nonlinear Anal., 22 (1994), 1163-1180.doi: 10.1016/0362-546X(94)90235-6. |
[32] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Trans. Amer. Math. Soc., 23, Amer. Math. Soc., Providence, RI, 1968. |
[33] |
Ph. Laurençot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 167-185.doi: 10.1017/S0308210500030663. |
[34] |
C. Lefter and J. Sprekels, Optimal boundary control of a phase field system modeling nonisothermal phase transitions, Adv. Math. Sci. Appl., 17 (2007), 181-194. |
[35] |
J.-L. Lions, Équations Différentielles Opérationnelles et Problèmes Aux Limites, Grundlehren, Band 111, Springer-Verlag, Berlin, 1961. |
[36] |
A. Miranville and R. Quintanilla, A type III phase-field system with a logarithmic potential, Appl. Math. Lett., 24 (2011), 1003-1008.doi: 10.1016/j.aml.2011.01.016. |
[37] |
A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.doi: 10.1002/mma.464. |
[38] |
G. Schimperna, Abstract approach to evolution equations of phase field type and applications, J. Differential Equations, 164 (2000), 395-430.doi: 10.1006/jdeq.1999.3753. |
[39] |
K. Shirakawa and N. Yamazaki, Optimal control problems of phase field system with total variation functional as the interfacial energy, Adv. Differential Equations, 18 (2013), 309-350. |
[40] |
J. Simon, Compact sets in the space $L^p(0,T; B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[41] |
J. Sprekels and S. Zheng, Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions, Adv. Math. Sci. Appl., 1 (1992), 113-125. |