-
Previous Article
Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales
- MCRF Home
- This Issue
- Next Article
Partial null controllability of parabolic linear systems
1. | Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16, Route de Gray, 25030 Besançon Cedex, France, France, France |
References:
[1] |
F. Alabau-Boussouira, A hierarchic multi-level energy method for the control of bidiagonal and mixed $n$-coupled cascade systems of PDE's by a reduced number of controls, Adv. Differential Equations, 18 (2013), 1005-1072. |
[2] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.
doi: 10.7153/dea-01-24. |
[3] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291.
doi: 10.1007/s00028-009-0008-8. |
[4] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey, Math. Control Relat. Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[5] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains, C. R. Math. Acad. Sci. Paris, 352 (2014), 391-396.
doi: 10.1016/j.crma.2014.03.004. |
[6] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence, preprint, Available from: https://hal.archives-ouvertes.fr/hal-01165713. |
[7] |
A. Benabdallah, M. Cristofol, P. Gaitan and L. De Teresa, Controllability to trajectories for some parabolic systems of three and two equations by one control force, Math. Control Relat. Fields, 4 (2014), 17-44. |
[8] |
F. Boyer, On the penalised {HUM} approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, 41e Congrès National d'Analyse Numérique, EDP Sci., Les Ulis, 41 (2013), 15-58.
doi: 10.1051/proc/201341002. |
[9] |
F. Boyer and G. Olive, Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, Math. Control Relat. Fields, 4 (2014), 263-287.
doi: 10.3934/mcrf.2014.4.263. |
[10] |
S. Chakrabarty and F. B. Hanson, Distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method, Math. biosci., 219 (2009), 129-141.
doi: 10.1016/j.mbs.2009.03.005. |
[11] |
J.-M. Coron, Control and Nonlinearity, American Mathematical Society, Providence, RI, 136 2007. |
[12] |
I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Gauthier-Villars, Paris-Brussels-Montreal, 1974. |
[13] |
H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292. |
[14] |
E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758.
doi: 10.1016/j.jfa.2010.06.003. |
[15] |
E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. |
[16] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Seoul National University, 1996. |
[17] |
J.-M. Ghidaglia, Some backward uniqueness results, Nonlinear Anal., 10 (1986), 777-790.
doi: 10.1016/0362-546X(86)90037-4. |
[18] |
R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems, A numerical approach. Encyclopedia of Mathematics and its Applications, 117. Cambridge University Press, Cambridge, 2008.
doi: 10.1017/CBO9780511721595. |
[19] |
M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.
doi: 10.4171/PM/1859. |
[20] |
S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.
doi: 10.1051/cocv/2012013. |
[21] |
J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications, Dunod, Paris, 2 1968. |
[22] |
K. Mauffrey, On the null controllability of a $3 \times 3$ parabolic system with non-constant coefficients by one or two control forces, J. Math. Pures Appl. (9), 99 (2013), 187-210.
doi: 10.1016/j.matpur.2012.06.010. |
[23] |
S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math., 31 (1958), 219-239. |
[24] |
G. Olive, Null-controllability for some linear parabolic systems with controls acting on different parts of the domain and its boundary, Math. Control Signals Systems, 23 (2012), 257-280.
doi: 10.1007/s00498-011-0071-x. |
show all references
References:
[1] |
F. Alabau-Boussouira, A hierarchic multi-level energy method for the control of bidiagonal and mixed $n$-coupled cascade systems of PDE's by a reduced number of controls, Adv. Differential Equations, 18 (2013), 1005-1072. |
[2] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.
doi: 10.7153/dea-01-24. |
[3] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291.
doi: 10.1007/s00028-009-0008-8. |
[4] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey, Math. Control Relat. Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[5] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains, C. R. Math. Acad. Sci. Paris, 352 (2014), 391-396.
doi: 10.1016/j.crma.2014.03.004. |
[6] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence, preprint, Available from: https://hal.archives-ouvertes.fr/hal-01165713. |
[7] |
A. Benabdallah, M. Cristofol, P. Gaitan and L. De Teresa, Controllability to trajectories for some parabolic systems of three and two equations by one control force, Math. Control Relat. Fields, 4 (2014), 17-44. |
[8] |
F. Boyer, On the penalised {HUM} approach and its applications to the numerical approximation of null-controls for parabolic problems, in CANUM 2012, 41e Congrès National d'Analyse Numérique, EDP Sci., Les Ulis, 41 (2013), 15-58.
doi: 10.1051/proc/201341002. |
[9] |
F. Boyer and G. Olive, Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, Math. Control Relat. Fields, 4 (2014), 263-287.
doi: 10.3934/mcrf.2014.4.263. |
[10] |
S. Chakrabarty and F. B. Hanson, Distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method, Math. biosci., 219 (2009), 129-141.
doi: 10.1016/j.mbs.2009.03.005. |
[11] |
J.-M. Coron, Control and Nonlinearity, American Mathematical Society, Providence, RI, 136 2007. |
[12] |
I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Gauthier-Villars, Paris-Brussels-Montreal, 1974. |
[13] |
H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292. |
[14] |
E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758.
doi: 10.1016/j.jfa.2010.06.003. |
[15] |
E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. |
[16] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Seoul National University, 1996. |
[17] |
J.-M. Ghidaglia, Some backward uniqueness results, Nonlinear Anal., 10 (1986), 777-790.
doi: 10.1016/0362-546X(86)90037-4. |
[18] |
R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems, A numerical approach. Encyclopedia of Mathematics and its Applications, 117. Cambridge University Press, Cambridge, 2008.
doi: 10.1017/CBO9780511721595. |
[19] |
M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.
doi: 10.4171/PM/1859. |
[20] |
S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.
doi: 10.1051/cocv/2012013. |
[21] |
J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications, Dunod, Paris, 2 1968. |
[22] |
K. Mauffrey, On the null controllability of a $3 \times 3$ parabolic system with non-constant coefficients by one or two control forces, J. Math. Pures Appl. (9), 99 (2013), 187-210.
doi: 10.1016/j.matpur.2012.06.010. |
[23] |
S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math., 31 (1958), 219-239. |
[24] |
G. Olive, Null-controllability for some linear parabolic systems with controls acting on different parts of the domain and its boundary, Math. Control Signals Systems, 23 (2012), 257-280.
doi: 10.1007/s00498-011-0071-x. |
[1] |
Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037 |
[2] |
Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations and Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005 |
[3] |
Hamid Maarouf. Local Kalman rank condition for linear time varying systems. Mathematical Control and Related Fields, 2022, 12 (2) : 433-446. doi: 10.3934/mcrf.2021029 |
[4] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 339-351. doi: 10.3934/naco.2021009 |
[5] |
Luciano Pandolfi. Riesz systems and moment method in the study of viscoelasticity in one space dimension. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1487-1510. doi: 10.3934/dcdsb.2010.14.1487 |
[6] |
Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243 |
[7] |
Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control and Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465 |
[8] |
Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations and Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167 |
[9] |
Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074 |
[10] |
Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control and Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004 |
[11] |
Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007 |
[12] |
Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations and Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026 |
[13] |
Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control and Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521 |
[14] |
Thuy N. T. Nguyen. Uniform controllability of semidiscrete approximations for parabolic systems in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 613-640. doi: 10.3934/dcdsb.2015.20.613 |
[15] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[16] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 555-566. doi: 10.3934/naco.2020055 |
[17] |
Brahim Allal, Genni Fragnelli, Jawad Salhi*. Controllability for degenerate/singular parabolic systems involving memory terms. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022071 |
[18] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[19] |
Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014 |
[20] |
Ali Wehbe, Marwa Koumaiha, Layla Toufaily. Boundary observability and exact controllability of strongly coupled wave equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1269-1305. doi: 10.3934/dcdss.2021091 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]