June  2016, 6(2): 251-269. doi: 10.3934/mcrf.2016003

Determination of time dependent factors of coefficients in fractional diffusion equations

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153, Japan

2. 

Aix-Marseille Université, CNRS, CPT UMR 7332, Marseille, 13288, France

Received  January 2015 Revised  February 2016 Published  April 2016

In the present paper, we consider initial-boundary value problems for partial differential equations with time-fractional derivatives which evolve in $Q=\Omega\times(0,T)$ where $\Omega$ is a bounded domain of $\mathbb{R}^d$ and $T>0$. We study the stability of the inverse problems of determining the time-dependent parameter in a source term or a coefficient of zero-th order term from observations of the solution at a point $x_0\in\overline{\Omega}$ for all $t\in(0,T)$.
Citation: Kenichi Fujishiro, Yavar Kian. Determination of time dependent factors of coefficients in fractional diffusion equations. Mathematical Control & Related Fields, 2016, 6 (2) : 251-269. doi: 10.3934/mcrf.2016003
References:
[1]

E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis,, Water Resources Res., 28 (1992), 3293. doi: 10.1029/92WR01757. Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[3]

O. P. Agarwal, Solution for a fractional diffusion-wave equation defined in a bounded domain,, Nonlinear Dyn., 29 (2002), 145. doi: 10.1023/A:1016539022492. Google Scholar

[4]

S. Beckers and M. Yamamoto, Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives,, International Series of Numerical Mathematics, 164 (2013), 45. Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar

[6]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems,, Sov. Math. Dokl., 24 (1981), 244. Google Scholar

[7]

J. R. Cannon and S. P. Esteva, An inverse problem for the heat equation,, Inverse Problems, 2 (1986), 395. doi: 10.1088/0266-5611/2/4/007. Google Scholar

[8]

J. Carcione, F. Sanchez-Sesma, F. Luzón and J. Perez Gavilán, Theory and simulation of time-fractional fluid diffusion in porous media,, Journal of Physics A: Mathematical and Theoretical, 46 (2013). doi: 10.1088/1751-8113/46/34/345501. Google Scholar

[9]

J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one dimensional fractional diffusion equation,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/11/115002. Google Scholar

[10]

M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations,, Math. Control Relat. Fields, 3 (2013), 143. doi: 10.3934/mcrf.2013.3.143. Google Scholar

[11]

D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order,, Proceedings of the Japan Academy, 43 (1967), 82. doi: 10.3792/pja/1195521686. Google Scholar

[12]

P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/6/065006. Google Scholar

[13]

V. D. Gejji and H. Jafari, Boundary value problems for fractional diffusion-wave equation,, Aust. J. Math. Anal. Appl., 3 (2006), 1. Google Scholar

[14]

R. Gorenflo and F. Mainardi, Fractional diffusion processes: Probability distributions and continuous time random walk,, in Processes with long range correlations (eds. G. Rangarajan and M. Ding), (2003), 148. doi: 10.1007/3-540-44832-2_8. Google Scholar

[15]

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles,, Water Resources Res., 34 (1998), 1027. doi: 10.1029/98WR00214. Google Scholar

[16]

Y. Hatano, J. Nakagawa, S. Wang and M. Yamamoto, Determination of order in fractional diffusion equation,, J. Math-for-Ind. 5A, 5A (2013), 51. Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Differential Equations,, Springer-Verlag, (1981). Google Scholar

[18]

Z. Li, O. Yu. Imanuvilov and M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations,, Inverse Problems, 32 (2016). doi: 10.1088/0266-5611/32/1/015004. Google Scholar

[19]

J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. I,, Dunod, (1968). Google Scholar

[20]

Y. Liu, W. Rundell and M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem,, , (). Google Scholar

[21]

Y. Luchko, Initial-boundary value problems for the generalized time-fractional diffusion equation,, Journal of Mathematical Analysis and Applications, 374 (2011), 538. doi: 10.1016/j.jmaa.2010.08.048. Google Scholar

[22]

Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation,, J. Math. Anal. Appl., 351 (2009), 218. doi: 10.1016/j.jmaa.2008.10.018. Google Scholar

[23]

D. Matignon, Stability properties for generalized fractional differential systems,, ESAIM:Proc., 5 (1998), 145. doi: 10.1051/proc:1998004. Google Scholar

[24]

D. Matignon, An introduction to fractional calculus, in Scaling, Fractals and Wavelets,, in Digital Signal and Image Processing Series (eds. P. Abry, 7 (2009), 237. Google Scholar

[25]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Physics reports, 339 (2000), 1. doi: 10.1016/S0370-1573(00)00070-3. Google Scholar

[26]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, Wiley, (1993). Google Scholar

[27]

L. Miller and M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/7/075013. Google Scholar

[28]

I. Podlubny, Fractional Differential Equations,, Academic Press, (1999). Google Scholar

[29]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker, (2000). Google Scholar

[30]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation,, J. Phys. A, 27 (1994), 3407. doi: 10.1088/0305-4470/27/10/017. Google Scholar

[31]

S. Saitoh, V. K. Tuan and M. Yamamoto, Convolution inequalities and applications,, J. Ineq. Pure and Appl. Math., 4 (2003). Google Scholar

[32]

S. Saitoh, V. K. Tuan and M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems,, J. Ineq. Pure and Appl. Math., 3 (2002). Google Scholar

[33]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426. doi: 10.1016/j.jmaa.2011.04.058. Google Scholar

[34]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, Gordon and Breach Science Publishers, (1993). Google Scholar

[35]

E. M. Stein, Singular Intearals and Differentiability Properties of Functions,, Princeton university press, (1970). Google Scholar

[36]

R. S. Strichartz, Multipliers on fractional Sobolev spaces,, J. Math. Mech., 16 (1967), 1031. Google Scholar

[37]

X. Xu, J. Cheng and M. Yamamoto, Carleman estimate for a fractional diffusion equation with half order and application,, Appl. Anal., 90 (2011), 1355. doi: 10.1080/00036811.2010.507199. Google Scholar

[38]

M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/10/105010. Google Scholar

show all references

References:
[1]

E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis,, Water Resources Res., 28 (1992), 3293. doi: 10.1029/92WR01757. Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[3]

O. P. Agarwal, Solution for a fractional diffusion-wave equation defined in a bounded domain,, Nonlinear Dyn., 29 (2002), 145. doi: 10.1023/A:1016539022492. Google Scholar

[4]

S. Beckers and M. Yamamoto, Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives,, International Series of Numerical Mathematics, 164 (2013), 45. Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar

[6]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems,, Sov. Math. Dokl., 24 (1981), 244. Google Scholar

[7]

J. R. Cannon and S. P. Esteva, An inverse problem for the heat equation,, Inverse Problems, 2 (1986), 395. doi: 10.1088/0266-5611/2/4/007. Google Scholar

[8]

J. Carcione, F. Sanchez-Sesma, F. Luzón and J. Perez Gavilán, Theory and simulation of time-fractional fluid diffusion in porous media,, Journal of Physics A: Mathematical and Theoretical, 46 (2013). doi: 10.1088/1751-8113/46/34/345501. Google Scholar

[9]

J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one dimensional fractional diffusion equation,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/11/115002. Google Scholar

[10]

M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations,, Math. Control Relat. Fields, 3 (2013), 143. doi: 10.3934/mcrf.2013.3.143. Google Scholar

[11]

D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order,, Proceedings of the Japan Academy, 43 (1967), 82. doi: 10.3792/pja/1195521686. Google Scholar

[12]

P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/6/065006. Google Scholar

[13]

V. D. Gejji and H. Jafari, Boundary value problems for fractional diffusion-wave equation,, Aust. J. Math. Anal. Appl., 3 (2006), 1. Google Scholar

[14]

R. Gorenflo and F. Mainardi, Fractional diffusion processes: Probability distributions and continuous time random walk,, in Processes with long range correlations (eds. G. Rangarajan and M. Ding), (2003), 148. doi: 10.1007/3-540-44832-2_8. Google Scholar

[15]

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles,, Water Resources Res., 34 (1998), 1027. doi: 10.1029/98WR00214. Google Scholar

[16]

Y. Hatano, J. Nakagawa, S. Wang and M. Yamamoto, Determination of order in fractional diffusion equation,, J. Math-for-Ind. 5A, 5A (2013), 51. Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Differential Equations,, Springer-Verlag, (1981). Google Scholar

[18]

Z. Li, O. Yu. Imanuvilov and M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations,, Inverse Problems, 32 (2016). doi: 10.1088/0266-5611/32/1/015004. Google Scholar

[19]

J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. I,, Dunod, (1968). Google Scholar

[20]

Y. Liu, W. Rundell and M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem,, , (). Google Scholar

[21]

Y. Luchko, Initial-boundary value problems for the generalized time-fractional diffusion equation,, Journal of Mathematical Analysis and Applications, 374 (2011), 538. doi: 10.1016/j.jmaa.2010.08.048. Google Scholar

[22]

Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation,, J. Math. Anal. Appl., 351 (2009), 218. doi: 10.1016/j.jmaa.2008.10.018. Google Scholar

[23]

D. Matignon, Stability properties for generalized fractional differential systems,, ESAIM:Proc., 5 (1998), 145. doi: 10.1051/proc:1998004. Google Scholar

[24]

D. Matignon, An introduction to fractional calculus, in Scaling, Fractals and Wavelets,, in Digital Signal and Image Processing Series (eds. P. Abry, 7 (2009), 237. Google Scholar

[25]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Physics reports, 339 (2000), 1. doi: 10.1016/S0370-1573(00)00070-3. Google Scholar

[26]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, Wiley, (1993). Google Scholar

[27]

L. Miller and M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/7/075013. Google Scholar

[28]

I. Podlubny, Fractional Differential Equations,, Academic Press, (1999). Google Scholar

[29]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker, (2000). Google Scholar

[30]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation,, J. Phys. A, 27 (1994), 3407. doi: 10.1088/0305-4470/27/10/017. Google Scholar

[31]

S. Saitoh, V. K. Tuan and M. Yamamoto, Convolution inequalities and applications,, J. Ineq. Pure and Appl. Math., 4 (2003). Google Scholar

[32]

S. Saitoh, V. K. Tuan and M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems,, J. Ineq. Pure and Appl. Math., 3 (2002). Google Scholar

[33]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426. doi: 10.1016/j.jmaa.2011.04.058. Google Scholar

[34]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, Gordon and Breach Science Publishers, (1993). Google Scholar

[35]

E. M. Stein, Singular Intearals and Differentiability Properties of Functions,, Princeton university press, (1970). Google Scholar

[36]

R. S. Strichartz, Multipliers on fractional Sobolev spaces,, J. Math. Mech., 16 (1967), 1031. Google Scholar

[37]

X. Xu, J. Cheng and M. Yamamoto, Carleman estimate for a fractional diffusion equation with half order and application,, Appl. Anal., 90 (2011), 1355. doi: 10.1080/00036811.2010.507199. Google Scholar

[38]

M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/10/105010. Google Scholar

[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[3]

Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659

[4]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[5]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[6]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[7]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[8]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[9]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[10]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[11]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025

[12]

Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020001

[13]

Masahiro Kubo, Noriaki Yamazaki. Periodic stability of elliptic-parabolic variational inequalities with time-dependent boundary double obstacles. Conference Publications, 2007, 2007 (Special) : 614-623. doi: 10.3934/proc.2007.2007.614

[14]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[15]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140

[16]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[17]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[18]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[19]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[20]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]