Citation: |
[1] |
E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis, Water Resources Res., 28 (1992), 3293-3307.doi: 10.1029/92WR01757. |
[2] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. |
[3] |
O. P. Agarwal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn., 29 (2002), 145-155.doi: 10.1023/A:1016539022492. |
[4] |
S. Beckers and M. Yamamoto, Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives, International Series of Numerical Mathematics, 164 (2013), 45-55. |
[5] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[6] |
A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems, Sov. Math. Dokl., 24 (1981), 244-247. |
[7] |
J. R. Cannon and S. P. Esteva, An inverse problem for the heat equation, Inverse Problems, 2 (1986), 395-403.doi: 10.1088/0266-5611/2/4/007. |
[8] |
J. Carcione, F. Sanchez-Sesma, F. Luzón and J. Perez Gavilán, Theory and simulation of time-fractional fluid diffusion in porous media, Journal of Physics A: Mathematical and Theoretical, 46 (2013), 345501, 23pp.doi: 10.1088/1751-8113/46/34/345501. |
[9] |
J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one dimensional fractional diffusion equation, Inverse Problems, 25 (2009), 115002, 16pp.doi: 10.1088/0266-5611/25/11/115002. |
[10] |
M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Relat. Fields, 3 (2013), 143-160.doi: 10.3934/mcrf.2013.3.143. |
[11] |
D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proceedings of the Japan Academy, 43 (1967), 82-86.doi: 10.3792/pja/1195521686. |
[12] |
P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29 (2013), 065006, 18pp.doi: 10.1088/0266-5611/29/6/065006. |
[13] |
V. D. Gejji and H. Jafari, Boundary value problems for fractional diffusion-wave equation, Aust. J. Math. Anal. Appl., 3 (2006), 1-8. |
[14] |
R. Gorenflo and F. Mainardi, Fractional diffusion processes: Probability distributions and continuous time random walk, in Processes with long range correlations (eds. G. Rangarajan and M. Ding), Vol. 621, Lecture Notes in Physics. Berlin: Springer, (2003), 148-166.doi: 10.1007/3-540-44832-2_8. |
[15] |
Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Res., 34 (1998), 1027-1033.doi: 10.1029/98WR00214. |
[16] |
Y. Hatano, J. Nakagawa, S. Wang and M. Yamamoto, Determination of order in fractional diffusion equation, J. Math-for-Ind. 5A, 5A (2013), 51-57. |
[17] |
D. Henry, Geometric Theory of Semilinear Differential Equations, Springer-Verlag, Berlin, 1981. |
[18] |
Z. Li, O. Yu. Imanuvilov and M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations, Inverse Problems, 32 (2016), 015004.doi: 10.1088/0266-5611/32/1/015004. |
[19] |
J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. I, Dunod, Paris, 1968. |
[20] |
Y. Liu, W. Rundell and M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem, arXiv:1507.00845. |
[21] |
Y. Luchko, Initial-boundary value problems for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications, 374 (2011), 538-548.doi: 10.1016/j.jmaa.2010.08.048. |
[22] |
Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218-223.doi: 10.1016/j.jmaa.2008.10.018. |
[23] |
D. Matignon, Stability properties for generalized fractional differential systems, ESAIM:Proc., 5 (1998), 145-158.doi: 10.1051/proc:1998004. |
[24] |
D. Matignon, An introduction to fractional calculus, in Scaling, Fractals and Wavelets, in Digital Signal and Image Processing Series (eds. P. Abry, P. Goncalvès and J. Lévy-Véhel), ISTE - Wiley, 7 (2009), 237-278. |
[25] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics reports, 339 (2000), 1-77.doi: 10.1016/S0370-1573(00)00070-3. |
[26] |
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993. |
[27] |
L. Miller and M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation, Inverse Problems, 29 (2013), 075013, 8pp.doi: 10.1088/0266-5611/29/7/075013. |
[28] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[29] |
A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000. |
[30] |
H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A, 27 (1994), 3407-3410.doi: 10.1088/0305-4470/27/10/017. |
[31] |
S. Saitoh, V. K. Tuan and M. Yamamoto, Convolution inequalities and applications, J. Ineq. Pure and Appl. Math., 4 (2003), Art. 50, 8pp. |
[32] |
S. Saitoh, V. K. Tuan and M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems, J. Ineq. Pure and Appl. Math., 3 (2002), Art. 80, 11pp. |
[33] |
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.doi: 10.1016/j.jmaa.2011.04.058. |
[34] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Philadelphia, 1993. |
[35] |
E. M. Stein, Singular Intearals and Differentiability Properties of Functions, Princeton university press, Princeton, 1970. |
[36] |
R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech., 16 (1967), 1031-1060. |
[37] |
X. Xu, J. Cheng and M. Yamamoto, Carleman estimate for a fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355-1371.doi: 10.1080/00036811.2010.507199. |
[38] |
M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Problems, 28 (2012), 105010, 10pp.doi: 10.1088/0266-5611/28/10/105010. |