June  2016, 6(2): 271-292. doi: 10.3934/mcrf.2016004

Exponential stabilization of Timoshenko beam with input and output delays

1. 

School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China

2. 

Department of Mathematics, Tianjin University, Tianjin 300072

Received  October 2014 Revised  October 2015 Published  April 2016

In this paper, we consider the exponential stabilization issue of Timoshenko beam with input and output delays. By using the Luenberger observer and Smith predictor we obtain an estimate of the state of the system, and by the partial state predictor we transform the delayed system into a without delay system, and then by the collocated feedback of the without delay system to obtain the control signal. We prove that under the control signal, the Timoshenko beam with output and input delays can be stabilized exponentially.
Citation: Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control & Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004
References:
[1]

T. Faria, On a planar system modelling a neuron network with memory,, J. Differential Equations, 168 (2000), 129. doi: 10.1006/jdeq.2000.3881.

[2]

T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Differential Equations, 244 (2008), 1049. doi: 10.1016/j.jde.2007.12.005.

[3]

Guo, Y. Chen and J. Wu, Two-parameter bifurcations in a network of two neurons with multiple delays,, J. Differential Equations, 244 (2008), 444. doi: 10.1016/j.jde.2007.09.008.

[4]

B. Z. Guo, C. Z. Xu and H. Hammouri, Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation,, ESAIM:Control, 18 (2012), 22. doi: 10.1051/cocv/2010044.

[5]

Z. J. Han and G. Q. Xu, Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks,, ESAIM:Control, 17 (2010), 552. doi: 10.1051/cocv/2010009.

[6]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam,, SIAM. J. Control Optim., 25 (1987), 1417. doi: 10.1137/0325078.

[7]

X. F. Liu and G. Q. Xu, Exponenntial stabilization for Timoshenko beam with distributed delay in the boundary control,, Abstract and Applied Analysis, (2013). doi: 10.1155/2013/726794.

[8]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feednacks,, SIAM Journal on Control and Optimization, 45 (2006), 1561. doi: 10.1137/060648891.

[9]

S. Nicaise and J. Valein, Stabilitization of the wave equation on 1-d networks with a delay term in the nodal feedbacks,, Networks and Heterogeneous Media, 2 (2007), 425. doi: 10.3934/nhm.2007.2.425.

[10]

S. Nicaise and C. Pignotti, Stabilitization of the wave equation with boundary or internal distributed delay,, Differential and Integral Equation, 21 (2008), 935.

[11]

G. Stepan, Retarded dynamical system: stability and characteristic functions,, Longman Scientific and Technical, (1989), 136.

[12]

Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control,, Systems and Control letters, 61 (2012), 1069. doi: 10.1016/j.sysconle.2012.07.012.

[13]

Y. F. Shang, G. Q. Xu and Y. L. Chen, Stability analysis of Euler-Bernoulli beam with input delay in the boundary control,, Asian Journal of Control, 14 (2012), 186. doi: 10.1002/asjc.279.

[14]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Basel Hoston Berlin: Birkhaüser, (2009). doi: 10.1007/978-3-7643-8994-9.

[15]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control,, ESAIM: Control, 12 (2006), 70. doi: 10.1051/cocv:2006021.

[16]

G. Q. Xu and H. X. Wang, Stabilization of Timoshenko beam system with delay in the boundary control,, INT. J. Control, 86 (2013), 1165. doi: 10.1080/00207179.2013.787494.

[17]

R. Yafia, Danamics and numerical simulations in a production and development of red blood cells model with one delay,, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 582. doi: 10.1016/j.cnsns.2007.08.012.

show all references

References:
[1]

T. Faria, On a planar system modelling a neuron network with memory,, J. Differential Equations, 168 (2000), 129. doi: 10.1006/jdeq.2000.3881.

[2]

T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Differential Equations, 244 (2008), 1049. doi: 10.1016/j.jde.2007.12.005.

[3]

Guo, Y. Chen and J. Wu, Two-parameter bifurcations in a network of two neurons with multiple delays,, J. Differential Equations, 244 (2008), 444. doi: 10.1016/j.jde.2007.09.008.

[4]

B. Z. Guo, C. Z. Xu and H. Hammouri, Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation,, ESAIM:Control, 18 (2012), 22. doi: 10.1051/cocv/2010044.

[5]

Z. J. Han and G. Q. Xu, Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks,, ESAIM:Control, 17 (2010), 552. doi: 10.1051/cocv/2010009.

[6]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam,, SIAM. J. Control Optim., 25 (1987), 1417. doi: 10.1137/0325078.

[7]

X. F. Liu and G. Q. Xu, Exponenntial stabilization for Timoshenko beam with distributed delay in the boundary control,, Abstract and Applied Analysis, (2013). doi: 10.1155/2013/726794.

[8]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feednacks,, SIAM Journal on Control and Optimization, 45 (2006), 1561. doi: 10.1137/060648891.

[9]

S. Nicaise and J. Valein, Stabilitization of the wave equation on 1-d networks with a delay term in the nodal feedbacks,, Networks and Heterogeneous Media, 2 (2007), 425. doi: 10.3934/nhm.2007.2.425.

[10]

S. Nicaise and C. Pignotti, Stabilitization of the wave equation with boundary or internal distributed delay,, Differential and Integral Equation, 21 (2008), 935.

[11]

G. Stepan, Retarded dynamical system: stability and characteristic functions,, Longman Scientific and Technical, (1989), 136.

[12]

Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control,, Systems and Control letters, 61 (2012), 1069. doi: 10.1016/j.sysconle.2012.07.012.

[13]

Y. F. Shang, G. Q. Xu and Y. L. Chen, Stability analysis of Euler-Bernoulli beam with input delay in the boundary control,, Asian Journal of Control, 14 (2012), 186. doi: 10.1002/asjc.279.

[14]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Basel Hoston Berlin: Birkhaüser, (2009). doi: 10.1007/978-3-7643-8994-9.

[15]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control,, ESAIM: Control, 12 (2006), 70. doi: 10.1051/cocv:2006021.

[16]

G. Q. Xu and H. X. Wang, Stabilization of Timoshenko beam system with delay in the boundary control,, INT. J. Control, 86 (2013), 1165. doi: 10.1080/00207179.2013.787494.

[17]

R. Yafia, Danamics and numerical simulations in a production and development of red blood cells model with one delay,, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 582. doi: 10.1016/j.cnsns.2007.08.012.

[1]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[2]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[3]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[4]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[5]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[6]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[7]

Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004

[8]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[9]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[10]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[11]

M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337

[12]

Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197

[13]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[14]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[15]

Toufik Bakir, Bernard Bonnard, Jérémy Rouot. A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks & Heterogeneous Media, 2019, 14 (1) : 79-100. doi: 10.3934/nhm.2019005

[16]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[17]

Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-41. doi: 10.3934/dcdss.2020068

[18]

Andrey Olypher, Jean Vaillant. On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences & Engineering, 2016, 13 (3) : 579-596. doi: 10.3934/mbe.2016009

[19]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[20]

Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]