June  2016, 6(2): 335-362. doi: 10.3934/mcrf.2016006

Optimal control of a two-phase flow model with state constraints

1. 

Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States

Received  February 2015 Revised  April 2015 Published  April 2016

We investigate in this article the Pontryagin's maximum principle for a class of control problems associated with a two-phase flow model in a two dimensional bounded domain. The model consists of the Navier-Stokes equations for the velocity $v, $ coupled with a convective Allen-Cahn model for the order (phase) parameter $\phi. $ The optimal problems involve a state constraint similar to that considered in [18]. We derive the Pontryagin's maximum principle for the control problems assuming that a solution exists. Let us note that the coupling between the Navier-Stokes and the Allen-Cahn systems makes the analysis of the control problem more involved. In particular, the associated adjoint systems have less regularity than the one derived in [18].
Citation: Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006
References:
[1]

H. Abels, On a diffuse interface model for a two-phase flow of compressible viscous fluids,, Indiana Univ. Math. J., 57 (2008), 659.  doi: 10.1512/iumj.2008.57.3391.  Google Scholar

[2]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities,, Arch. Ration. Mech. Anal., 194 (2009), 463.  doi: 10.1007/s00205-008-0160-2.  Google Scholar

[3]

F. Abergel and R. Temam, On some control problems in fluid mechanics,, Theoret. Comput. Fluid Dynam., 1 (1990), 303.  doi: 10.1007/BF00271794.  Google Scholar

[4]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow,, Pysica D (Applied Physics), 32 (1999), 1119.  doi: 10.1088/0022-3727/32/10/307.  Google Scholar

[5]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[6]

C. Cao and C. G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility,, Nonlinearity, 25 (2012), 3211.  doi: 10.1088/0951-7715/25/11/3211.  Google Scholar

[7]

E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids,, Math. Models Methods Appl. Sci., 20 (2010), 1129.  doi: 10.1142/S0218202510004544.  Google Scholar

[8]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[9]

C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows,, Discrete Contin. Dyn. Syst., 28 (2010), 1.  doi: 10.3934/dcds.2010.28.1.  Google Scholar

[10]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D,, Chin. Ann. Math. Ser. B, 31 (2010), 655.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[11]

M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluid and immiscible fluids described by an order parameter,, Math. Models Methods Appl. Sci., 6 (1996), 815.  doi: 10.1142/S0218202596000341.  Google Scholar

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena,, Rev. Modern Phys., 49 (1977), 435.   Google Scholar

[13]

S. Li, Optimal controls of Boussinesq equations with state constraints,, Nonlinear Anal., 60 (2005), 1485.  doi: 10.1016/j.na.2004.11.010.  Google Scholar

[14]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems,, Birkhäuser, (1995).  doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[15]

J. L. Lions, Optimal Control of Systems governed by Partial Differential Equations,, Springer-Verlag, (1971).   Google Scholar

[16]

A. Onuki, Phase transition of fluids in shear flow,, Phase Transition Dynamics, 11 (2009), 641.  doi: 10.1017/CBO9780511534874.012.  Google Scholar

[17]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68., Appl. Math. Sci., (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[18]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints,, SIAM J. Control Optim., 41 (2002), 583.  doi: 10.1137/S0363012901385769.  Google Scholar

[19]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint,, Nonlinear Anal., 51 (2002), 509.  doi: 10.1016/S0362-546X(01)00843-4.  Google Scholar

[20]

G. Wang, Pontryagin's maximum principle for optimal control of the stationary Navier-Stokes equations,, Nonlinear Anal., 52 (2003), 1853.  doi: 10.1016/S0362-546X(02)00161-X.  Google Scholar

[21]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems,, Nonlinear Anal., 52 (2003), 1911.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

show all references

References:
[1]

H. Abels, On a diffuse interface model for a two-phase flow of compressible viscous fluids,, Indiana Univ. Math. J., 57 (2008), 659.  doi: 10.1512/iumj.2008.57.3391.  Google Scholar

[2]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities,, Arch. Ration. Mech. Anal., 194 (2009), 463.  doi: 10.1007/s00205-008-0160-2.  Google Scholar

[3]

F. Abergel and R. Temam, On some control problems in fluid mechanics,, Theoret. Comput. Fluid Dynam., 1 (1990), 303.  doi: 10.1007/BF00271794.  Google Scholar

[4]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow,, Pysica D (Applied Physics), 32 (1999), 1119.  doi: 10.1088/0022-3727/32/10/307.  Google Scholar

[5]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[6]

C. Cao and C. G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility,, Nonlinearity, 25 (2012), 3211.  doi: 10.1088/0951-7715/25/11/3211.  Google Scholar

[7]

E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids,, Math. Models Methods Appl. Sci., 20 (2010), 1129.  doi: 10.1142/S0218202510004544.  Google Scholar

[8]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[9]

C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows,, Discrete Contin. Dyn. Syst., 28 (2010), 1.  doi: 10.3934/dcds.2010.28.1.  Google Scholar

[10]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D,, Chin. Ann. Math. Ser. B, 31 (2010), 655.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[11]

M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluid and immiscible fluids described by an order parameter,, Math. Models Methods Appl. Sci., 6 (1996), 815.  doi: 10.1142/S0218202596000341.  Google Scholar

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena,, Rev. Modern Phys., 49 (1977), 435.   Google Scholar

[13]

S. Li, Optimal controls of Boussinesq equations with state constraints,, Nonlinear Anal., 60 (2005), 1485.  doi: 10.1016/j.na.2004.11.010.  Google Scholar

[14]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems,, Birkhäuser, (1995).  doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[15]

J. L. Lions, Optimal Control of Systems governed by Partial Differential Equations,, Springer-Verlag, (1971).   Google Scholar

[16]

A. Onuki, Phase transition of fluids in shear flow,, Phase Transition Dynamics, 11 (2009), 641.  doi: 10.1017/CBO9780511534874.012.  Google Scholar

[17]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68., Appl. Math. Sci., (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[18]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints,, SIAM J. Control Optim., 41 (2002), 583.  doi: 10.1137/S0363012901385769.  Google Scholar

[19]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint,, Nonlinear Anal., 51 (2002), 509.  doi: 10.1016/S0362-546X(01)00843-4.  Google Scholar

[20]

G. Wang, Pontryagin's maximum principle for optimal control of the stationary Navier-Stokes equations,, Nonlinear Anal., 52 (2003), 1853.  doi: 10.1016/S0362-546X(02)00161-X.  Google Scholar

[21]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems,, Nonlinear Anal., 52 (2003), 1911.  doi: 10.1016/S0362-546X(02)00282-1.  Google Scholar

[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[5]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[6]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[7]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[13]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[14]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[15]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[16]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]