September  2016, 6(3): 407-427. doi: 10.3934/mcrf.2016009

Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary

1. 

Institut de Mathématiques de Marseille, CNRS, UMR 7373, École Centrale, Aix-Marseille Université, 13453 Marseille, France

2. 

Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences, School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China

3. 

Aix-Marseille Université de Toulon, CNRS, CPT, 13288 Marseille, France

Received  September 2015 Revised  February 2016 Published  August 2016

We consider the multidimensional inverse problem of determining the conductivity coefficient of a hyperbolic equation in an infinite cylindrical domain, from a single boundary observation of the solution. We prove Hölder stability with the aid of a Carleman estimate specifically designed for hyperbolic waveguides.
Citation: Michel Cristofol, Shumin Li, Eric Soccorsi. Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary. Mathematical Control & Related Fields, 2016, 6 (3) : 407-427. doi: 10.3934/mcrf.2016009
References:
[1]

M. Bellassoued, Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation,, Inverse Problems, 20 (2004), 1033.  doi: 10.1088/0266-5611/20/4/003.  Google Scholar

[2]

M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Applicable Analysis, 83 (2004), 983.  doi: 10.1080/0003681042000221678.  Google Scholar

[3]

M. Bellassoued, M. Cristofol and E. Soccorsi, Inverse boundary value problem for the dynamical heterogeneous Maxwell's system,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/9/095009.  Google Scholar

[4]

M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem,, J. Diff. Equat., 247 (2009), 465.  doi: 10.1016/j.jde.2009.03.024.  Google Scholar

[5]

M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data,, Applicable Analysis, 87 (2008), 1105.  doi: 10.1080/00036810802369231.  Google Scholar

[6]

M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation,, J. Math. Pures Appl., 85 (2006), 193.  doi: 10.1016/j.matpur.2005.02.004.  Google Scholar

[7]

M. Bellassoued and M. Yamamoto, Determination of a coefficient in the wave equation with a single measurement,, Applicable Analysis, 87 (2008), 901.  doi: 10.1080/00036810802369249.  Google Scholar

[8]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimentional inverse problems,, Soviet Math. Dokl., 24 (1981), 244.   Google Scholar

[9]

L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip,, C. R. Math. Acad. Sci. Paris, 346 (2008), 635.  doi: 10.1016/j.crma.2008.04.004.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations,, Amer. Math. Soc., (2010).  doi: 10.1090/gsm/019.  Google Scholar

[11]

O. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations,, Inverse Problems, 17 (2001), 717.  doi: 10.1088/0266-5611/17/4/310.  Google Scholar

[12]

O. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with single measurement,, Inverse Problems, 19 (2003), 157.  doi: 10.1088/0266-5611/19/1/309.  Google Scholar

[13]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data,, Inverse Problems, 8 (1992), 193.  doi: 10.1088/0266-5611/8/2/003.  Google Scholar

[14]

V. Isakov, Inverse Problems for Partial Differential Equations,, Springer-Verlag, (2006).   Google Scholar

[15]

Y. Kian, Q. S. Phan and E. Soccorsi, Carleman estimate for infinite cylindrical quantum domains and application to inverse problems,, Inverse Problems, 30 (2014).  doi: 10.1088/0266-5611/30/5/055016.  Google Scholar

[16]

Y. Kian, Q. S. Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains,, Journal of Mathematical Analysis and Applications, 426 (2015), 194.  doi: 10.1016/j.jmaa.2015.01.028.  Google Scholar

[17]

M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time dependent data,, Inverse Problems, 7 (1991), 577.  doi: 10.1088/0266-5611/7/4/007.  Google Scholar

[18]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an accoustic equation,, Applicable Analysis, 85 (2006), 515.  doi: 10.1080/00036810500474788.  Google Scholar

[19]

J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications,, vol. 1, (1968).   Google Scholar

[20]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media,, J. Funct. Anal., 154 (1998), 330.  doi: 10.1006/jfan.1997.3188.  Google Scholar

[21]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65.  doi: 10.1016/S0021-7824(99)80010-5.  Google Scholar

show all references

References:
[1]

M. Bellassoued, Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation,, Inverse Problems, 20 (2004), 1033.  doi: 10.1088/0266-5611/20/4/003.  Google Scholar

[2]

M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Applicable Analysis, 83 (2004), 983.  doi: 10.1080/0003681042000221678.  Google Scholar

[3]

M. Bellassoued, M. Cristofol and E. Soccorsi, Inverse boundary value problem for the dynamical heterogeneous Maxwell's system,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/9/095009.  Google Scholar

[4]

M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem,, J. Diff. Equat., 247 (2009), 465.  doi: 10.1016/j.jde.2009.03.024.  Google Scholar

[5]

M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data,, Applicable Analysis, 87 (2008), 1105.  doi: 10.1080/00036810802369231.  Google Scholar

[6]

M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation,, J. Math. Pures Appl., 85 (2006), 193.  doi: 10.1016/j.matpur.2005.02.004.  Google Scholar

[7]

M. Bellassoued and M. Yamamoto, Determination of a coefficient in the wave equation with a single measurement,, Applicable Analysis, 87 (2008), 901.  doi: 10.1080/00036810802369249.  Google Scholar

[8]

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimentional inverse problems,, Soviet Math. Dokl., 24 (1981), 244.   Google Scholar

[9]

L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip,, C. R. Math. Acad. Sci. Paris, 346 (2008), 635.  doi: 10.1016/j.crma.2008.04.004.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations,, Amer. Math. Soc., (2010).  doi: 10.1090/gsm/019.  Google Scholar

[11]

O. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations,, Inverse Problems, 17 (2001), 717.  doi: 10.1088/0266-5611/17/4/310.  Google Scholar

[12]

O. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with single measurement,, Inverse Problems, 19 (2003), 157.  doi: 10.1088/0266-5611/19/1/309.  Google Scholar

[13]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data,, Inverse Problems, 8 (1992), 193.  doi: 10.1088/0266-5611/8/2/003.  Google Scholar

[14]

V. Isakov, Inverse Problems for Partial Differential Equations,, Springer-Verlag, (2006).   Google Scholar

[15]

Y. Kian, Q. S. Phan and E. Soccorsi, Carleman estimate for infinite cylindrical quantum domains and application to inverse problems,, Inverse Problems, 30 (2014).  doi: 10.1088/0266-5611/30/5/055016.  Google Scholar

[16]

Y. Kian, Q. S. Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains,, Journal of Mathematical Analysis and Applications, 426 (2015), 194.  doi: 10.1016/j.jmaa.2015.01.028.  Google Scholar

[17]

M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time dependent data,, Inverse Problems, 7 (1991), 577.  doi: 10.1088/0266-5611/7/4/007.  Google Scholar

[18]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an accoustic equation,, Applicable Analysis, 85 (2006), 515.  doi: 10.1080/00036810500474788.  Google Scholar

[19]

J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications,, vol. 1, (1968).   Google Scholar

[20]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media,, J. Funct. Anal., 154 (1998), 330.  doi: 10.1006/jfan.1997.3188.  Google Scholar

[21]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65.  doi: 10.1016/S0021-7824(99)80010-5.  Google Scholar

[1]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[2]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[5]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[6]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[7]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[8]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[11]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[12]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[16]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[19]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[20]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]