• Previous Article
    Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions
  • MCRF Home
  • This Issue
  • Next Article
    Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary
September  2016, 6(3): 429-446. doi: 10.3934/mcrf.2016010

Asymptotic stability of wave equations coupled by velocities

1. 

School of Mathematical Sciences, Fudan University, Shanghai Key Laboratory for Contemporary Applied Mathematics, Shanghai 200433, China

2. 

School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433

Received  June 2015 Revised  October 2015 Published  August 2016

This paper is devoted to study the asymptotic stability of wave equations with constant coefficients coupled by velocities. By using Riesz basis approach, multiplier method and frequency domain approach respectively, we find the sufficient and necessary condition, that the coefficients satisfy, leading to the exponential stability of the system. In addition, we give the optimal decay rate in one dimensional case.
Citation: Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam),, Elsevier/Academic Press, (2003).   Google Scholar

[2]

F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations,, J. Evol. Equ., 2 (2002), 127.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[3]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems,, SIAM J. Control Optim., 41 (2002), 511.  doi: 10.1137/S0363012901385368.  Google Scholar

[4]

F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems,, J. Differential Equations, 249 (2010), 1145.  doi: 10.1016/j.jde.2009.12.005.  Google Scholar

[5]

F. Alabau-Boussouira, Z. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities,, preprint, (2015).   Google Scholar

[6]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[7]

S. Cox and E. Zuazua, The rate at which energy decays in a damped string,, Comm. Partial Differential Equations, 19 (1994), 213.  doi: 10.1080/03605309408821015.  Google Scholar

[8]

I. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators,, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, (1969).   Google Scholar

[9]

G. H. Golub and C. F. Van Loan, Matrix Computations,, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, (1996).   Google Scholar

[10]

Z. Hu, Asymptotic Synchronization for a Coupled System of Wave Eqution (in Chinese),, Master Thesis, (2014).   Google Scholar

[11]

F. Huang, Characterization condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Diff. Eq., 1 (1985), 43.   Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, volume 36 of Paris-Chicester,, Masson-John Wiley, (1994).   Google Scholar

[13]

J. P. LaSalle, Some extensions of Liapunov's second method,, IRE Trans., CT-7 (1960), 520.   Google Scholar

[14]

T. Li and B. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math. Ser. B, 34 (2013), 139.  doi: 10.1007/s11401-012-0754-8.  Google Scholar

[15]

T. Li, B. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations,, ESAIM Control Optim. Calc. Var., 20 (2014), 339.  doi: 10.1051/cocv/2013066.  Google Scholar

[16]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630.  doi: 10.1007/s00033-004-3073-4.  Google Scholar

[17]

Z. Liu and B. Rao, Frequency domain approach for the polynomial stability of a system of partially damped wave equations,, J. Math. Anal. Appl., 335 (2007), 860.  doi: 10.1016/j.jmaa.2007.02.021.  Google Scholar

[18]

Z. Liu and B. Rao, A spectral approach to the indirect boundary control of a system of weakly coupled wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 399.  doi: 10.3934/dcds.2009.23.399.  Google Scholar

[19]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, volume 398 of Chapman & Hall/CRC Research Notes in Mathematics,, Chapman & Hall/CRC, (1999).   Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics,, Academic Press, (1987).   Google Scholar

[22]

J. Prüss, On the spectrum of $C_{0}$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam),, Elsevier/Academic Press, (2003).   Google Scholar

[2]

F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations,, J. Evol. Equ., 2 (2002), 127.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[3]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems,, SIAM J. Control Optim., 41 (2002), 511.  doi: 10.1137/S0363012901385368.  Google Scholar

[4]

F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems,, J. Differential Equations, 249 (2010), 1145.  doi: 10.1016/j.jde.2009.12.005.  Google Scholar

[5]

F. Alabau-Boussouira, Z. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities,, preprint, (2015).   Google Scholar

[6]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[7]

S. Cox and E. Zuazua, The rate at which energy decays in a damped string,, Comm. Partial Differential Equations, 19 (1994), 213.  doi: 10.1080/03605309408821015.  Google Scholar

[8]

I. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators,, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, (1969).   Google Scholar

[9]

G. H. Golub and C. F. Van Loan, Matrix Computations,, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, (1996).   Google Scholar

[10]

Z. Hu, Asymptotic Synchronization for a Coupled System of Wave Eqution (in Chinese),, Master Thesis, (2014).   Google Scholar

[11]

F. Huang, Characterization condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Diff. Eq., 1 (1985), 43.   Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, volume 36 of Paris-Chicester,, Masson-John Wiley, (1994).   Google Scholar

[13]

J. P. LaSalle, Some extensions of Liapunov's second method,, IRE Trans., CT-7 (1960), 520.   Google Scholar

[14]

T. Li and B. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math. Ser. B, 34 (2013), 139.  doi: 10.1007/s11401-012-0754-8.  Google Scholar

[15]

T. Li, B. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations,, ESAIM Control Optim. Calc. Var., 20 (2014), 339.  doi: 10.1051/cocv/2013066.  Google Scholar

[16]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630.  doi: 10.1007/s00033-004-3073-4.  Google Scholar

[17]

Z. Liu and B. Rao, Frequency domain approach for the polynomial stability of a system of partially damped wave equations,, J. Math. Anal. Appl., 335 (2007), 860.  doi: 10.1016/j.jmaa.2007.02.021.  Google Scholar

[18]

Z. Liu and B. Rao, A spectral approach to the indirect boundary control of a system of weakly coupled wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 399.  doi: 10.3934/dcds.2009.23.399.  Google Scholar

[19]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, volume 398 of Chapman & Hall/CRC Research Notes in Mathematics,, Chapman & Hall/CRC, (1999).   Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics,, Academic Press, (1987).   Google Scholar

[22]

J. Prüss, On the spectrum of $C_{0}$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[6]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[17]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]