• Previous Article
    Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary
  • MCRF Home
  • This Issue
  • Next Article
    Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions
September  2016, 6(3): 429-446. doi: 10.3934/mcrf.2016010

Asymptotic stability of wave equations coupled by velocities

1. 

School of Mathematical Sciences, Fudan University, Shanghai Key Laboratory for Contemporary Applied Mathematics, Shanghai 200433, China

2. 

School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433

Received  June 2015 Revised  October 2015 Published  August 2016

This paper is devoted to study the asymptotic stability of wave equations with constant coefficients coupled by velocities. By using Riesz basis approach, multiplier method and frequency domain approach respectively, we find the sufficient and necessary condition, that the coefficients satisfy, leading to the exponential stability of the system. In addition, we give the optimal decay rate in one dimensional case.
Citation: Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam),, Elsevier/Academic Press, (2003). Google Scholar

[2]

F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations,, J. Evol. Equ., 2 (2002), 127. doi: 10.1007/s00028-002-8083-0. Google Scholar

[3]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems,, SIAM J. Control Optim., 41 (2002), 511. doi: 10.1137/S0363012901385368. Google Scholar

[4]

F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems,, J. Differential Equations, 249 (2010), 1145. doi: 10.1016/j.jde.2009.12.005. Google Scholar

[5]

F. Alabau-Boussouira, Z. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities,, preprint, (2015). Google Scholar

[6]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[7]

S. Cox and E. Zuazua, The rate at which energy decays in a damped string,, Comm. Partial Differential Equations, 19 (1994), 213. doi: 10.1080/03605309408821015. Google Scholar

[8]

I. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators,, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, (1969). Google Scholar

[9]

G. H. Golub and C. F. Van Loan, Matrix Computations,, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, (1996). Google Scholar

[10]

Z. Hu, Asymptotic Synchronization for a Coupled System of Wave Eqution (in Chinese),, Master Thesis, (2014). Google Scholar

[11]

F. Huang, Characterization condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Diff. Eq., 1 (1985), 43. Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, volume 36 of Paris-Chicester,, Masson-John Wiley, (1994). Google Scholar

[13]

J. P. LaSalle, Some extensions of Liapunov's second method,, IRE Trans., CT-7 (1960), 520. Google Scholar

[14]

T. Li and B. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math. Ser. B, 34 (2013), 139. doi: 10.1007/s11401-012-0754-8. Google Scholar

[15]

T. Li, B. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations,, ESAIM Control Optim. Calc. Var., 20 (2014), 339. doi: 10.1051/cocv/2013066. Google Scholar

[16]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630. doi: 10.1007/s00033-004-3073-4. Google Scholar

[17]

Z. Liu and B. Rao, Frequency domain approach for the polynomial stability of a system of partially damped wave equations,, J. Math. Anal. Appl., 335 (2007), 860. doi: 10.1016/j.jmaa.2007.02.021. Google Scholar

[18]

Z. Liu and B. Rao, A spectral approach to the indirect boundary control of a system of weakly coupled wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 399. doi: 10.3934/dcds.2009.23.399. Google Scholar

[19]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, volume 398 of Chapman & Hall/CRC Research Notes in Mathematics,, Chapman & Hall/CRC, (1999). Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[21]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics,, Academic Press, (1987). Google Scholar

[22]

J. Prüss, On the spectrum of $C_{0}$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847. doi: 10.2307/1999112. Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam),, Elsevier/Academic Press, (2003). Google Scholar

[2]

F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations,, J. Evol. Equ., 2 (2002), 127. doi: 10.1007/s00028-002-8083-0. Google Scholar

[3]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems,, SIAM J. Control Optim., 41 (2002), 511. doi: 10.1137/S0363012901385368. Google Scholar

[4]

F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems,, J. Differential Equations, 249 (2010), 1145. doi: 10.1016/j.jde.2009.12.005. Google Scholar

[5]

F. Alabau-Boussouira, Z. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities,, preprint, (2015). Google Scholar

[6]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[7]

S. Cox and E. Zuazua, The rate at which energy decays in a damped string,, Comm. Partial Differential Equations, 19 (1994), 213. doi: 10.1080/03605309408821015. Google Scholar

[8]

I. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators,, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, (1969). Google Scholar

[9]

G. H. Golub and C. F. Van Loan, Matrix Computations,, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, (1996). Google Scholar

[10]

Z. Hu, Asymptotic Synchronization for a Coupled System of Wave Eqution (in Chinese),, Master Thesis, (2014). Google Scholar

[11]

F. Huang, Characterization condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Diff. Eq., 1 (1985), 43. Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, volume 36 of Paris-Chicester,, Masson-John Wiley, (1994). Google Scholar

[13]

J. P. LaSalle, Some extensions of Liapunov's second method,, IRE Trans., CT-7 (1960), 520. Google Scholar

[14]

T. Li and B. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls,, Chin. Ann. Math. Ser. B, 34 (2013), 139. doi: 10.1007/s11401-012-0754-8. Google Scholar

[15]

T. Li, B. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations,, ESAIM Control Optim. Calc. Var., 20 (2014), 339. doi: 10.1051/cocv/2013066. Google Scholar

[16]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630. doi: 10.1007/s00033-004-3073-4. Google Scholar

[17]

Z. Liu and B. Rao, Frequency domain approach for the polynomial stability of a system of partially damped wave equations,, J. Math. Anal. Appl., 335 (2007), 860. doi: 10.1016/j.jmaa.2007.02.021. Google Scholar

[18]

Z. Liu and B. Rao, A spectral approach to the indirect boundary control of a system of weakly coupled wave equations,, Discrete Contin. Dyn. Syst., 23 (2009), 399. doi: 10.3934/dcds.2009.23.399. Google Scholar

[19]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, volume 398 of Chapman & Hall/CRC Research Notes in Mathematics,, Chapman & Hall/CRC, (1999). Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[21]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics,, Academic Press, (1987). Google Scholar

[22]

J. Prüss, On the spectrum of $C_{0}$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847. doi: 10.2307/1999112. Google Scholar

[1]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[2]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[3]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

[4]

Jason Metcalfe, David Spencer. Global existence for a coupled wave system related to the Strauss conjecture. Communications on Pure & Applied Analysis, 2018, 17 (2) : 593-604. doi: 10.3934/cpaa.2018032

[5]

Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893

[6]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[7]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[8]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[9]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[10]

Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control & Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481

[11]

Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure & Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881

[12]

Olha P. Kupenko, Rosanna Manzo. Shape stability of optimal control problems in coefficients for coupled system of Hammerstein type. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2967-2992. doi: 10.3934/dcdsb.2015.20.2967

[13]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[14]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[15]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[16]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[17]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic & Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[18]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[19]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[20]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]