September  2016, 6(3): 489-515. doi: 10.3934/mcrf.2016013

A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  May 2015 Revised  January 2016 Published  August 2016

In this paper, we present a numerical scheme to solve the initial-boundary value problem for backward stochastic partial differential equations of parabolic type. Based on the Galerkin method, we approximate the original equation by a family of backward stochastic differential equations (BSDEs, for short), and then solve these BSDEs by the time discretization. Combining the truncation with respect to the spatial variable and the backward Euler method on time variable, we obtain the global $L^2$ error estimate.
Citation: Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control & Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013
References:
[1]

C. Bender and R. Denk, A forward scheme for backward SDEs,, Stochastic Process. Appl., 117 (2007), 1793.  doi: 10.1016/j.spa.2007.03.005.  Google Scholar

[2]

B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations,, Stochastic Process. Appl., 111 (2004), 175.  doi: 10.1016/j.spa.2004.01.001.  Google Scholar

[3]

P. Briand and C. Labart, Simulation of BSDEs by Wiener chaos expansion,, Ann. Appl. Probab., 24 (2014), 1129.  doi: 10.1214/13-AAP943.  Google Scholar

[4]

J. Douglas Jr., J. Ma and P. Protter, Numerical methods for forward-backward stochastic differential equations,, Ann. Appl. Probab., 6 (1996), 940.  doi: 10.1214/aoap/1034968235.  Google Scholar

[5]

M. Fuhrman and Y. Hu, Infinite horizon BSDEs in infinite dimensions with continuous driver and applications,, J. Evol. Equ., 6 (2006), 459.  doi: 10.1007/s00028-006-0263-x.  Google Scholar

[6]

E. Gobet, J.-P. Lemor and X. Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations,, Ann. Appl. Probab., 15 (2005), 2172.  doi: 10.1214/105051605000000412.  Google Scholar

[7]

W. Grecksch and P. E. Kloeden, Time-discretised Galerkin approximations of parabolic stochastic PDEs,, Bull. Austral. Math. Soc., 54 (1996), 79.  doi: 10.1017/S0004972700015094.  Google Scholar

[8]

I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I,, Potential Anal., 9 (1998), 1.  doi: 10.1023/A:1008615012377.  Google Scholar

[9]

T. Y. Hou, W. Luo, B. Rozovskii and H.-M. Zhou, Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics,, J. Comput. Phys., 216 (2006), 687.  doi: 10.1016/j.jcp.2006.01.008.  Google Scholar

[10]

Y. Hu, D. Nualart and X. Song, Malliavin calculus for backward stochastic differential equations and application to numerical solutions,, Ann. Appl. Probab., 21 (2011), 2379.  doi: 10.1214/11-AAP762.  Google Scholar

[11]

Y. Hu and S. G. Peng, Maximum principle for semilinear stochastic evolution control systems,, Stochastics Stochastics Rep., 33 (1990), 159.  doi: 10.1080/17442509008833671.  Google Scholar

[12]

Y. Hu and S. G. Peng, Adapted solution of a backward semilinear stochastic evolution equation,, Stochastic Anal. Appl., 9 (1991), 445.  doi: 10.1080/07362999108809250.  Google Scholar

[13]

A. Jentzen and P. E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 649.  doi: 10.1098/rspa.2008.0325.  Google Scholar

[14]

S. Lototsky, R. Mikulevicius and B. L. Rozovskii, Nonlinear filtering revisited: A spectral approach,, SIAM J. Control Optim., 35 (1997), 435.  doi: 10.1137/S0363012993248918.  Google Scholar

[15]

Q. Lü and X. Zhang, General Pontryagin-type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions,, SpringerBriefs in Mathematics, (2014).  doi: 10.1007/978-3-319-06632-5.  Google Scholar

[16]

J. Ma, P. Protter, J. San Martin and S. Torres, Numerical method for backward stochastic differential equations,, Ann. Appl. Probab., 12 (2002), 302.  doi: 10.1214/aoap/1015961165.  Google Scholar

[17]

J. Ma, P. Protter and J. M. Yong, Solving forward-backward stochastic differential equations explicitly-a four step scheme,, Probab. Theory Related Fields, 98 (1994), 339.  doi: 10.1007/BF01192258.  Google Scholar

[18]

J. Ma and J. Zhang, Path regularity for solutions of backward stochastic differential equations,, Probab. Theory Related Fields, 122 (2002), 163.  doi: 10.1007/s004400100144.  Google Scholar

[19]

G. N. Milstein and M. V. Tretyakov, Numerical algorithms for forward-backward stochastic differential equations,, SIAM J. Sci. Comput., 28 (2006), 561.  doi: 10.1137/040614426.  Google Scholar

[20]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes,, Stochastics, 3 (1979), 127.  doi: 10.1080/17442507908833142.  Google Scholar

[21]

T. Shardlow, Numerical methods for stochastic parabolic PDEs,, Numer. Funct. Anal. Optim., 20 (1999), 121.  doi: 10.1080/01630569908816884.  Google Scholar

[22]

G. Tessitore, Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE,, Stochastic Anal. Appl., 14 (1996), 461.  doi: 10.1080/07362999608809451.  Google Scholar

[23]

J. B. Walsh, Finite element methods for parabolic stochastic PDE's,, Potential Anal., 23 (2005), 1.  doi: 10.1007/s11118-004-2950-y.  Google Scholar

[24]

P. Wang and X. Zhang, Numerical solutions of backward stochastic differential equations: A finite transposition method,, C. R. Math. Acad. Sci. Paris, 349 (2011), 901.  doi: 10.1016/j.crma.2011.07.011.  Google Scholar

[25]

Y. Wang, Transposition Solutions of Backward Stochastic Differential Equations and Numerical Schemes,, 2013, ().   Google Scholar

[26]

Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise,, BIT, 44 (2004), 829.  doi: 10.1007/s10543-004-3755-5.  Google Scholar

[27]

A. N. Yannacopoulos, N. E. Frangos and I. Karatzas, Wiener chaos solutions for linear backward stochastic evolution equations,, SIAM J. Math. Anal., 43 (2011), 68.  doi: 10.1137/090750652.  Google Scholar

[28]

J. Yong and X. Y. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations, vol. 43 of Applications of Mathematics (New York),, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[29]

J. Zhang, A numerical scheme for BSDEs,, Ann. Appl. Probab., 14 (2004), 459.  doi: 10.1214/aoap/1075828058.  Google Scholar

[30]

X. Y. Zhou, A duality analysis on stochastic partial differential equations,, J. Funct. Anal., 103 (1992), 275.  doi: 10.1016/0022-1236(92)90122-Y.  Google Scholar

show all references

References:
[1]

C. Bender and R. Denk, A forward scheme for backward SDEs,, Stochastic Process. Appl., 117 (2007), 1793.  doi: 10.1016/j.spa.2007.03.005.  Google Scholar

[2]

B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations,, Stochastic Process. Appl., 111 (2004), 175.  doi: 10.1016/j.spa.2004.01.001.  Google Scholar

[3]

P. Briand and C. Labart, Simulation of BSDEs by Wiener chaos expansion,, Ann. Appl. Probab., 24 (2014), 1129.  doi: 10.1214/13-AAP943.  Google Scholar

[4]

J. Douglas Jr., J. Ma and P. Protter, Numerical methods for forward-backward stochastic differential equations,, Ann. Appl. Probab., 6 (1996), 940.  doi: 10.1214/aoap/1034968235.  Google Scholar

[5]

M. Fuhrman and Y. Hu, Infinite horizon BSDEs in infinite dimensions with continuous driver and applications,, J. Evol. Equ., 6 (2006), 459.  doi: 10.1007/s00028-006-0263-x.  Google Scholar

[6]

E. Gobet, J.-P. Lemor and X. Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations,, Ann. Appl. Probab., 15 (2005), 2172.  doi: 10.1214/105051605000000412.  Google Scholar

[7]

W. Grecksch and P. E. Kloeden, Time-discretised Galerkin approximations of parabolic stochastic PDEs,, Bull. Austral. Math. Soc., 54 (1996), 79.  doi: 10.1017/S0004972700015094.  Google Scholar

[8]

I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I,, Potential Anal., 9 (1998), 1.  doi: 10.1023/A:1008615012377.  Google Scholar

[9]

T. Y. Hou, W. Luo, B. Rozovskii and H.-M. Zhou, Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics,, J. Comput. Phys., 216 (2006), 687.  doi: 10.1016/j.jcp.2006.01.008.  Google Scholar

[10]

Y. Hu, D. Nualart and X. Song, Malliavin calculus for backward stochastic differential equations and application to numerical solutions,, Ann. Appl. Probab., 21 (2011), 2379.  doi: 10.1214/11-AAP762.  Google Scholar

[11]

Y. Hu and S. G. Peng, Maximum principle for semilinear stochastic evolution control systems,, Stochastics Stochastics Rep., 33 (1990), 159.  doi: 10.1080/17442509008833671.  Google Scholar

[12]

Y. Hu and S. G. Peng, Adapted solution of a backward semilinear stochastic evolution equation,, Stochastic Anal. Appl., 9 (1991), 445.  doi: 10.1080/07362999108809250.  Google Scholar

[13]

A. Jentzen and P. E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 649.  doi: 10.1098/rspa.2008.0325.  Google Scholar

[14]

S. Lototsky, R. Mikulevicius and B. L. Rozovskii, Nonlinear filtering revisited: A spectral approach,, SIAM J. Control Optim., 35 (1997), 435.  doi: 10.1137/S0363012993248918.  Google Scholar

[15]

Q. Lü and X. Zhang, General Pontryagin-type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions,, SpringerBriefs in Mathematics, (2014).  doi: 10.1007/978-3-319-06632-5.  Google Scholar

[16]

J. Ma, P. Protter, J. San Martin and S. Torres, Numerical method for backward stochastic differential equations,, Ann. Appl. Probab., 12 (2002), 302.  doi: 10.1214/aoap/1015961165.  Google Scholar

[17]

J. Ma, P. Protter and J. M. Yong, Solving forward-backward stochastic differential equations explicitly-a four step scheme,, Probab. Theory Related Fields, 98 (1994), 339.  doi: 10.1007/BF01192258.  Google Scholar

[18]

J. Ma and J. Zhang, Path regularity for solutions of backward stochastic differential equations,, Probab. Theory Related Fields, 122 (2002), 163.  doi: 10.1007/s004400100144.  Google Scholar

[19]

G. N. Milstein and M. V. Tretyakov, Numerical algorithms for forward-backward stochastic differential equations,, SIAM J. Sci. Comput., 28 (2006), 561.  doi: 10.1137/040614426.  Google Scholar

[20]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes,, Stochastics, 3 (1979), 127.  doi: 10.1080/17442507908833142.  Google Scholar

[21]

T. Shardlow, Numerical methods for stochastic parabolic PDEs,, Numer. Funct. Anal. Optim., 20 (1999), 121.  doi: 10.1080/01630569908816884.  Google Scholar

[22]

G. Tessitore, Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE,, Stochastic Anal. Appl., 14 (1996), 461.  doi: 10.1080/07362999608809451.  Google Scholar

[23]

J. B. Walsh, Finite element methods for parabolic stochastic PDE's,, Potential Anal., 23 (2005), 1.  doi: 10.1007/s11118-004-2950-y.  Google Scholar

[24]

P. Wang and X. Zhang, Numerical solutions of backward stochastic differential equations: A finite transposition method,, C. R. Math. Acad. Sci. Paris, 349 (2011), 901.  doi: 10.1016/j.crma.2011.07.011.  Google Scholar

[25]

Y. Wang, Transposition Solutions of Backward Stochastic Differential Equations and Numerical Schemes,, 2013, ().   Google Scholar

[26]

Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise,, BIT, 44 (2004), 829.  doi: 10.1007/s10543-004-3755-5.  Google Scholar

[27]

A. N. Yannacopoulos, N. E. Frangos and I. Karatzas, Wiener chaos solutions for linear backward stochastic evolution equations,, SIAM J. Math. Anal., 43 (2011), 68.  doi: 10.1137/090750652.  Google Scholar

[28]

J. Yong and X. Y. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations, vol. 43 of Applications of Mathematics (New York),, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[29]

J. Zhang, A numerical scheme for BSDEs,, Ann. Appl. Probab., 14 (2004), 459.  doi: 10.1214/aoap/1075828058.  Google Scholar

[30]

X. Y. Zhou, A duality analysis on stochastic partial differential equations,, J. Funct. Anal., 103 (1992), 275.  doi: 10.1016/0022-1236(92)90122-Y.  Google Scholar

[1]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[8]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[9]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[10]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[11]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[16]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[17]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[18]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[19]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[20]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]