September  2016, 6(3): 517-534. doi: 10.3934/mcrf.2016014

An optimal consumption-investment model with constraint on consumption

1. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

2. 

School of Finance, Guangdong University of Foreign Studies, Guangzhou 510420, China

Received  June 2015 Revised  March 2016 Published  August 2016

A continuous-time consumption-investment model with constraint is considered for a small investor whose decisions are the consumption rate and the allocation of wealth to a risk-free and a risky asset with logarithmic Brownian motion fluctuations. The consumption rate is subject to an upper bound constraint which linearly depends on the investor's wealth and bankruptcy is prohibited. The investor's objective is to maximize the total expected discounted utility of consumption over an infinite trading horizon. It is shown that the value function is (second order) smooth everywhere but a unique (known) possibly exception point and the optimal consumption-investment strategy is provided in a closed feedback form of wealth. According to this model, an investor should take the similar investment strategy as in Merton's model regardless his financial situation. By contrast, the optimal consumption strategy does depend on the investor's financial situation: he should use a similar consumption strategy as in Merton's model when he is in a bad situation, and consume as much as possible when he is in a good situation.
Citation: Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014
References:
[1]

M. Akian, J. L. Menaldi and A. Sulem, On an investment-consumption model with transaction costs,, SIAM Journal on Control and Optimization, 34 (1996), 329.  doi: 10.1137/S0363012993247159.  Google Scholar

[2]

I. Bardhan, Consumption and investment under constraints,, Journal of Economic Dynamics and Control, 18 (1994), 909.   Google Scholar

[3]

X. S. Chen and F. H. Yi, A problem of singular stochastic control with optimal stopping in finite horizon,, SIAM Journal on Control and Optimization, 50 (2012), 2151.  doi: 10.1137/110832264.  Google Scholar

[4]

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. AMS, 277 (1983), 1.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[5]

J. Cvitanić and I. Karatzas, Convex duality in constrained portfolio optimization,, Annals of Applied Probability, 2 (1992), 767.  doi: 10.1214/aoap/1177005576.  Google Scholar

[6]

J. Cvitanić and I. Karatzas, Hedging contingent claims with constrained portfolios,, Annals of Applied Probability, 3 (1993), 652.  doi: 10.1214/aoap/1177005357.  Google Scholar

[7]

M. Dai and Z. Xu, Optimal redeeming strategy of stock loans with finite maturity,, Mathematical Finance, 21 (2011), 775.  doi: 10.1111/j.1467-9965.2010.00449.x.  Google Scholar

[8]

M. Dai, Z. Q. Xu and X. Y. Zhou, Continuous-time mean-variance portfolio selection with proportional transaction costs,, SIAM Journal on Financial Mathematics, 1 (2010), 96.  doi: 10.1137/080742889.  Google Scholar

[9]

M. Dai and F. H. Yi, Finite horizon optimal investment with transaction costs: A parabolic double obstacle problem,, Journal of Differential Equations, 246 (2009), 1445.  doi: 10.1016/j.jde.2008.11.003.  Google Scholar

[10]

M. H. A. Davis and A. Norman, Portfolio selection with transaction costs,, Mathematics of Operations Research, 15 (1990), 676.  doi: 10.1287/moor.15.4.676.  Google Scholar

[11]

R. Elie and N. Touzi, Optimal lifetime consumption and investment under a drawdown constraint,, Finance and Stochastics, 12 (2008), 299.  doi: 10.1007/s00780-008-0066-8.  Google Scholar

[12]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Second edition. Stochastic Modelling and Applied Probability, (2006).   Google Scholar

[13]

W. H. Fleming and T. Zariphopoulou, An optimal consumption and investment models with borrowing constraints,, Mathematics of Operations Research, 16 (1991), 802.  doi: 10.1287/moor.16.4.802.  Google Scholar

[14]

P. L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part 2,, Communications in Partial Differential Equations, 8 (1983), 1229.  doi: 10.1080/03605308308820301.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.  doi: 10.1111/j.1540-6261.1952.tb01525.x.  Google Scholar

[16]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investments,, John Wiley & Sons, (1959).   Google Scholar

[17]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[18]

R. C. Merton, Optimum consumption and portfolio rules in a continuous time model,, Journal of Economic Theory, 3 (1971), 373.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[19]

R. C. Merton, Theory of finance from the perspective of continuous time,, Journal of Financial and Quantitative Analysis, 10 (1975), 659.  doi: 10.2307/2330617.  Google Scholar

[20]

P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming,, Review of Economics and Statistics, 51 (1969), 239.   Google Scholar

[21]

P. S. Sethi, Optimal Consumption and Investment with Bankruptcy,, Kluwer Academic Publishers, (1997).  doi: 10.1007/978-1-4615-6257-3.  Google Scholar

[22]

S. Shreve and M. Soner, Optimal investment and consumption with transaction costs,, Annals of Applied Probability, 4 (1994), 609.  doi: 10.1214/aoap/1177004966.  Google Scholar

[23]

T. Zariphopoulou, Investment-consumption models with transaction fees and Markov chain parameters,, SIAM Journal on Control and Optimization, 30 (1992), 613.  doi: 10.1137/0330035.  Google Scholar

[24]

T. Zariphopoulou, Consumption-investment models with constraints,, SIAM Journal on Control and Optimization, 32 (1994), 59.  doi: 10.1137/S0363012991218827.  Google Scholar

show all references

References:
[1]

M. Akian, J. L. Menaldi and A. Sulem, On an investment-consumption model with transaction costs,, SIAM Journal on Control and Optimization, 34 (1996), 329.  doi: 10.1137/S0363012993247159.  Google Scholar

[2]

I. Bardhan, Consumption and investment under constraints,, Journal of Economic Dynamics and Control, 18 (1994), 909.   Google Scholar

[3]

X. S. Chen and F. H. Yi, A problem of singular stochastic control with optimal stopping in finite horizon,, SIAM Journal on Control and Optimization, 50 (2012), 2151.  doi: 10.1137/110832264.  Google Scholar

[4]

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. AMS, 277 (1983), 1.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[5]

J. Cvitanić and I. Karatzas, Convex duality in constrained portfolio optimization,, Annals of Applied Probability, 2 (1992), 767.  doi: 10.1214/aoap/1177005576.  Google Scholar

[6]

J. Cvitanić and I. Karatzas, Hedging contingent claims with constrained portfolios,, Annals of Applied Probability, 3 (1993), 652.  doi: 10.1214/aoap/1177005357.  Google Scholar

[7]

M. Dai and Z. Xu, Optimal redeeming strategy of stock loans with finite maturity,, Mathematical Finance, 21 (2011), 775.  doi: 10.1111/j.1467-9965.2010.00449.x.  Google Scholar

[8]

M. Dai, Z. Q. Xu and X. Y. Zhou, Continuous-time mean-variance portfolio selection with proportional transaction costs,, SIAM Journal on Financial Mathematics, 1 (2010), 96.  doi: 10.1137/080742889.  Google Scholar

[9]

M. Dai and F. H. Yi, Finite horizon optimal investment with transaction costs: A parabolic double obstacle problem,, Journal of Differential Equations, 246 (2009), 1445.  doi: 10.1016/j.jde.2008.11.003.  Google Scholar

[10]

M. H. A. Davis and A. Norman, Portfolio selection with transaction costs,, Mathematics of Operations Research, 15 (1990), 676.  doi: 10.1287/moor.15.4.676.  Google Scholar

[11]

R. Elie and N. Touzi, Optimal lifetime consumption and investment under a drawdown constraint,, Finance and Stochastics, 12 (2008), 299.  doi: 10.1007/s00780-008-0066-8.  Google Scholar

[12]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Second edition. Stochastic Modelling and Applied Probability, (2006).   Google Scholar

[13]

W. H. Fleming and T. Zariphopoulou, An optimal consumption and investment models with borrowing constraints,, Mathematics of Operations Research, 16 (1991), 802.  doi: 10.1287/moor.16.4.802.  Google Scholar

[14]

P. L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part 2,, Communications in Partial Differential Equations, 8 (1983), 1229.  doi: 10.1080/03605308308820301.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.  doi: 10.1111/j.1540-6261.1952.tb01525.x.  Google Scholar

[16]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investments,, John Wiley & Sons, (1959).   Google Scholar

[17]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[18]

R. C. Merton, Optimum consumption and portfolio rules in a continuous time model,, Journal of Economic Theory, 3 (1971), 373.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[19]

R. C. Merton, Theory of finance from the perspective of continuous time,, Journal of Financial and Quantitative Analysis, 10 (1975), 659.  doi: 10.2307/2330617.  Google Scholar

[20]

P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming,, Review of Economics and Statistics, 51 (1969), 239.   Google Scholar

[21]

P. S. Sethi, Optimal Consumption and Investment with Bankruptcy,, Kluwer Academic Publishers, (1997).  doi: 10.1007/978-1-4615-6257-3.  Google Scholar

[22]

S. Shreve and M. Soner, Optimal investment and consumption with transaction costs,, Annals of Applied Probability, 4 (1994), 609.  doi: 10.1214/aoap/1177004966.  Google Scholar

[23]

T. Zariphopoulou, Investment-consumption models with transaction fees and Markov chain parameters,, SIAM Journal on Control and Optimization, 30 (1992), 613.  doi: 10.1137/0330035.  Google Scholar

[24]

T. Zariphopoulou, Consumption-investment models with constraints,, SIAM Journal on Control and Optimization, 32 (1994), 59.  doi: 10.1137/S0363012991218827.  Google Scholar

[1]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[4]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[18]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[19]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[20]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]