• Previous Article
    Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions
  • MCRF Home
  • This Issue
  • Next Article
    An optimal control model of carbon reduction and trading
December  2016, 6(4): 551-593. doi: 10.3934/mcrf.2016016

Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity

1. 

School of Mathematics and Statistics, South-Central University For Nationalities, Wuhan, 430074

2. 

Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079

Received  January 2016 Revised  March 2016 Published  October 2016

We are concerned with a class of singularly perturbed quasilinear Schrödinger equations of the following form: \[ - {\varepsilon ^2}\Delta u - {\varepsilon ^2}\Delta ({u^2})u + V(x)u = h(u),{\text{ }}u > 0{\text{ in }}{\mathbb{R}^N}, \] where $\varepsilon $ is a small positive parameter, $N \ge 3$ and the nonlinearity $h$ is of critical growth. We construct a family of positive solutions ${u_\varepsilon } \in {H^1}({\mathbb{R}^N})$ of the above problem which concentrates around local minima of $V$ as $\varepsilon \to 0$ under certain assumptions on $h$. Our result especially solves the above problem in the case where $h(u) \sim \lambda {u^{q - 1}} + {u^{2 \cdot {2^ * } - 1}}{\text{ }}(2 < q \le 4,{\text{ }}\lambda > 0)$ and completes the study made in some recent works in the sense that, in those papers only the case where $h(u) \sim \lambda {u^{q - 1}} + {u^{2 \cdot {2^ * } - 1}}{\text{ }}(4 < q < 2 \cdot {2^ * },{\text{ }}\lambda > 0)$ was considered. Moreover, our main results extend also the arguments used in Byeon and Jeanjean [14], which deal with Schrödinger equations with subcritical nonlinearities, to the quasilinear Schrödinger equations with critical nonlinearities.
Citation: Yi He, Gongbao Li. Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Mathematical Control & Related Fields, 2016, 6 (4) : 551-593. doi: 10.3934/mcrf.2016016
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

J. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley & Sons, (1984).   Google Scholar

[3]

F. Bass and N. N. Nasanov, Nonlinear electromagnetic spin waves,, Phys. Rep., 189 (1990), 165.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[4]

V. Benci and G. Cerami, Existence of positive solutions of the equation $ - \Delta u + a(x)u = u^{\frac {N + 2} {N - 2}}$ in $\mathbbR^N$,, J. Funct. Anal., 88 (1990), 90.  doi: 10.1016/0022-1236(90)90120-A.  Google Scholar

[5]

H. Berestycki, T. Gallouët and O. Kavian, Equations de champs scalaires euclidiens non linéaires dans le plan,, C. R. Acad. Sci. Paris Ser. I Math., 297 (1983), 307.   Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[7]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, II existence of infinitely many solutions,, Arch. Rational Mech. Anal., 82 (1983), 347.  doi: 10.1007/BF00250556.  Google Scholar

[8]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, J. Differential Equations, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[9]

A. Borovskii and A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter,, JETP, 77 (1983), 562.   Google Scholar

[10]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schröndinger equation,, Commun. Math. Phys., 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[11]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, Phys. Fluids, B5 (1993), 3539.   Google Scholar

[12]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[13]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Commun. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[14]

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity,, Arch. Rational Mech. Anal., 185 (2007), 185.  doi: 10.1007/s00205-006-0019-3.  Google Scholar

[15]

J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations II,, Calc. Var. Partial Differential Equations, 18 (2003), 207.  doi: 10.1007/s00526-002-0191-8.  Google Scholar

[16]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems,, Birkhäuser, (1993).  doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[17]

S. Cingolani and N. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations,, Topol. Methods Nonlinear Anal., 10 (1997), 1.   Google Scholar

[18]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, Nonlinear Anal., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[19]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse,, Phys. Rev. Lett., 70 (1993), 2082.   Google Scholar

[20]

G. M. Figueiredo, N. Ikoma and J. R. Santos Junior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities,, Arch. Rational Mech. Anal., 213 (2014), 931.  doi: 10.1007/s00205-014-0747-8.  Google Scholar

[21]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[22]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method,, Commun. Partial Differential Equations, 21 (1996), 787.  doi: 10.1080/03605309608821208.  Google Scholar

[23]

J. Garcia Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877.  doi: 10.1090/S0002-9947-1991-1083144-2.  Google Scholar

[24]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2nd ed., (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[25]

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\mathbbR^N$: Mountain pass and symmetric mountain pass approaches,, Topol. Methods Nonlinear Anal., 35 (2010), 253.   Google Scholar

[26]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, Z. Phys., 37 (1980), 83.  doi: 10.1007/BF01325508.  Google Scholar

[27]

Y. He and G. Li, The existence and concentration of weak solutions to a class of $p$-Laplacian type problems in unbounded domains,, Sci. China Math., 57 (2014), 1927.  doi: 10.1007/s11425-014-4830-2.  Google Scholar

[28]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbbR^N$,, Proc. Amer. Math. Soc., 131 (2003), 2399.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[29]

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on $\mathbbR^N$,, Indiana Univ. Math. J., 54 (2005), 443.  doi: 10.1512/iumj.2005.54.2502.  Google Scholar

[30]

S. Kurihura, Large-amplitude quasi-solitons in superfluids films,, J. Phys. Soc. Jpn., 50 (1981), 3262.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[31]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons in superfluid films,, Phys. Rep., 194 (1990), 117.   Google Scholar

[32]

G. Li, Some properties of weak solutions of nonlinear scalar field equations,, Ann. Acad. Sci. Fenn. A I Math., 15 (1990), 27.  doi: 10.5186/aasfm.1990.1521.  Google Scholar

[33]

G. Li and S. Yan, Eigenvalue problems for quasilinear elliptic equations on $\mathbbR^N$,, Commun. Partial Differential Equations, 14 (1989), 1291.  doi: 10.1080/03605308908820654.  Google Scholar

[34]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part 2,, Ann. Inst. H. Poincaré Anal. Non. Linéaire, 1 (1984), 223.   Google Scholar

[35]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The limit case, part 1,, Rev. Mat. H. Iberoamericano, 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[36]

X. Liu, J. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method,, Proc. Amer. Math. Soc., 141 (2013), 253.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[37]

X. Liu, J. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method,, J. Differential Equations, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[38]

E. Laedke and K. Spatschek, Evolution theorem for a class of perturbed envelope soliton solutions,, J. Math. Phys., 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[39]

J. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I,, Proc. Amer. Math. Soc., 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[40]

J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, Commun. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[41]

J. Liu, Y. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Differential Equations, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[42]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, Calc. Var. Partial Differential Equations, 38 (2010), 275.  doi: 10.1007/s00526-009-0286-6.  Google Scholar

[43]

V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory,, Phys. Rep., 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[44]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical growth in $\mathbbR^N$,, J. Differential Equations, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[45]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbbR^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773.  doi: 10.1016/S0362-546X(96)00087-9.  Google Scholar

[46]

E. S. Noussair, C. A. Swanson and J. F. Yang, Quasilinear elliptic problems with critical exponents,, Nonlinear Anal., 20 (1993), 285.  doi: 10.1016/0362-546X(93)90164-N.  Google Scholar

[47]

W. M. Ni and I. Takagi, On the shape of least energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819.  doi: 10.1002/cpa.3160440705.  Google Scholar

[48]

W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem,, Duke Math. J., 70 (1993), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[49]

W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 48 (1995), 731.  doi: 10.1002/cpa.3160480704.  Google Scholar

[50]

Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class $( V )_a$,, Commun. Partial Differential Equations, 13 (1988), 1499.  doi: 10.1080/03605308808820585.  Google Scholar

[51]

Y. G. Oh, Corrections to existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class $( V )_a$,, Commun. Partial Differential Equations, 14 (1989), 833.   Google Scholar

[52]

Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential,, Commun. Math. Phys., 131 (1990), 223.  doi: 10.1007/BF02161413.  Google Scholar

[53]

M. del Pino and P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains,, Calc. Var. Partial Differential Equations, 4 (1996), 121.  doi: 10.1007/BF01189950.  Google Scholar

[54]

M. del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245.  doi: 10.1006/jfan.1996.3085.  Google Scholar

[55]

M. del Pino and P. L. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method,, Math. Ann., 324 (2002), 1.  doi: 10.1007/s002080200327.  Google Scholar

[56]

M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, Ann. Inst. Henri Poincaré, 15 (1998), 127.  doi: 10.1016/S0294-1449(97)89296-7.  Google Scholar

[57]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. Partial Differential Equations, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[58]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[59]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,, Phys. A., 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[60]

P. Rabinowitz, On a class of nonlinear Schrödinger equations,, Z. Angew. Math. Phys., 43 (1992), 270.  doi: 10.1007/BF00946631.  Google Scholar

[61]

M. Ramos, Z. Q. Wang and M. Willem, Positive solutions for elliptic equations with critical growth in unbounded domains,, Calculus of Variations and Differential Equations, 410 (2000), 192.   Google Scholar

[62]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, Phys. Rev., 50 (1994), 687.  doi: 10.1103/PhysRevE.50.R687.  Google Scholar

[63]

S. Takeno and S. Homma, Classical planar Heinsenberg ferromagnet, complex scalar fields and nonlinear excitation,, Progr. Theoret. Physics, 65 (1981), 1844.  doi: 10.1143/PTP.65.1844.  Google Scholar

[64]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[65]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations,, Commun. Math. Phys., 153 (1993), 229.  doi: 10.1007/BF02096642.  Google Scholar

[66]

Y. Wang and W. Zou, Bound states to critical quasilinear Schrödinger equations,, Nonlinear Differ. Equ. Appl., 19 (2012), 19.  doi: 10.1007/s00030-011-0116-3.  Google Scholar

[67]

M. Willem, Minimax Theorems,, Birkhäuser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[68]

J. Zhang, Z. Chen and W. Zou, Standing waves for nonlinear Schrödinger equations involving critical growth,, J. Lond. Math. Soc., 90 (2014), 827.  doi: 10.1112/jlms/jdu054.  Google Scholar

[69]

X. Zhu and J. Yang, Regularity for quasilinear elliptic equations in involving critical Sobolev exponent,, System Sci. Math., 9 (1989), 47.   Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

J. Aubin and I. Ekeland, Applied Nonlinear Analysis,, John Wiley & Sons, (1984).   Google Scholar

[3]

F. Bass and N. N. Nasanov, Nonlinear electromagnetic spin waves,, Phys. Rep., 189 (1990), 165.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[4]

V. Benci and G. Cerami, Existence of positive solutions of the equation $ - \Delta u + a(x)u = u^{\frac {N + 2} {N - 2}}$ in $\mathbbR^N$,, J. Funct. Anal., 88 (1990), 90.  doi: 10.1016/0022-1236(90)90120-A.  Google Scholar

[5]

H. Berestycki, T. Gallouët and O. Kavian, Equations de champs scalaires euclidiens non linéaires dans le plan,, C. R. Acad. Sci. Paris Ser. I Math., 297 (1983), 307.   Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[7]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, II existence of infinitely many solutions,, Arch. Rational Mech. Anal., 82 (1983), 347.  doi: 10.1007/BF00250556.  Google Scholar

[8]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, J. Differential Equations, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[9]

A. Borovskii and A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter,, JETP, 77 (1983), 562.   Google Scholar

[10]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schröndinger equation,, Commun. Math. Phys., 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[11]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, Phys. Fluids, B5 (1993), 3539.   Google Scholar

[12]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[13]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Commun. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[14]

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity,, Arch. Rational Mech. Anal., 185 (2007), 185.  doi: 10.1007/s00205-006-0019-3.  Google Scholar

[15]

J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations II,, Calc. Var. Partial Differential Equations, 18 (2003), 207.  doi: 10.1007/s00526-002-0191-8.  Google Scholar

[16]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems,, Birkhäuser, (1993).  doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[17]

S. Cingolani and N. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations,, Topol. Methods Nonlinear Anal., 10 (1997), 1.   Google Scholar

[18]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, Nonlinear Anal., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[19]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse,, Phys. Rev. Lett., 70 (1993), 2082.   Google Scholar

[20]

G. M. Figueiredo, N. Ikoma and J. R. Santos Junior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities,, Arch. Rational Mech. Anal., 213 (2014), 931.  doi: 10.1007/s00205-014-0747-8.  Google Scholar

[21]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[22]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method,, Commun. Partial Differential Equations, 21 (1996), 787.  doi: 10.1080/03605309608821208.  Google Scholar

[23]

J. Garcia Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877.  doi: 10.1090/S0002-9947-1991-1083144-2.  Google Scholar

[24]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2nd ed., (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[25]

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\mathbbR^N$: Mountain pass and symmetric mountain pass approaches,, Topol. Methods Nonlinear Anal., 35 (2010), 253.   Google Scholar

[26]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, Z. Phys., 37 (1980), 83.  doi: 10.1007/BF01325508.  Google Scholar

[27]

Y. He and G. Li, The existence and concentration of weak solutions to a class of $p$-Laplacian type problems in unbounded domains,, Sci. China Math., 57 (2014), 1927.  doi: 10.1007/s11425-014-4830-2.  Google Scholar

[28]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbbR^N$,, Proc. Amer. Math. Soc., 131 (2003), 2399.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[29]

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on $\mathbbR^N$,, Indiana Univ. Math. J., 54 (2005), 443.  doi: 10.1512/iumj.2005.54.2502.  Google Scholar

[30]

S. Kurihura, Large-amplitude quasi-solitons in superfluids films,, J. Phys. Soc. Jpn., 50 (1981), 3262.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[31]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons in superfluid films,, Phys. Rep., 194 (1990), 117.   Google Scholar

[32]

G. Li, Some properties of weak solutions of nonlinear scalar field equations,, Ann. Acad. Sci. Fenn. A I Math., 15 (1990), 27.  doi: 10.5186/aasfm.1990.1521.  Google Scholar

[33]

G. Li and S. Yan, Eigenvalue problems for quasilinear elliptic equations on $\mathbbR^N$,, Commun. Partial Differential Equations, 14 (1989), 1291.  doi: 10.1080/03605308908820654.  Google Scholar

[34]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part 2,, Ann. Inst. H. Poincaré Anal. Non. Linéaire, 1 (1984), 223.   Google Scholar

[35]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The limit case, part 1,, Rev. Mat. H. Iberoamericano, 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[36]

X. Liu, J. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method,, Proc. Amer. Math. Soc., 141 (2013), 253.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[37]

X. Liu, J. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method,, J. Differential Equations, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[38]

E. Laedke and K. Spatschek, Evolution theorem for a class of perturbed envelope soliton solutions,, J. Math. Phys., 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[39]

J. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I,, Proc. Amer. Math. Soc., 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[40]

J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, Commun. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[41]

J. Liu, Y. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Differential Equations, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[42]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, Calc. Var. Partial Differential Equations, 38 (2010), 275.  doi: 10.1007/s00526-009-0286-6.  Google Scholar

[43]

V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory,, Phys. Rep., 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[44]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical growth in $\mathbbR^N$,, J. Differential Equations, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[45]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbbR^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773.  doi: 10.1016/S0362-546X(96)00087-9.  Google Scholar

[46]

E. S. Noussair, C. A. Swanson and J. F. Yang, Quasilinear elliptic problems with critical exponents,, Nonlinear Anal., 20 (1993), 285.  doi: 10.1016/0362-546X(93)90164-N.  Google Scholar

[47]

W. M. Ni and I. Takagi, On the shape of least energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819.  doi: 10.1002/cpa.3160440705.  Google Scholar

[48]

W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem,, Duke Math. J., 70 (1993), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[49]

W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 48 (1995), 731.  doi: 10.1002/cpa.3160480704.  Google Scholar

[50]

Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class $( V )_a$,, Commun. Partial Differential Equations, 13 (1988), 1499.  doi: 10.1080/03605308808820585.  Google Scholar

[51]

Y. G. Oh, Corrections to existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class $( V )_a$,, Commun. Partial Differential Equations, 14 (1989), 833.   Google Scholar

[52]

Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential,, Commun. Math. Phys., 131 (1990), 223.  doi: 10.1007/BF02161413.  Google Scholar

[53]

M. del Pino and P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains,, Calc. Var. Partial Differential Equations, 4 (1996), 121.  doi: 10.1007/BF01189950.  Google Scholar

[54]

M. del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245.  doi: 10.1006/jfan.1996.3085.  Google Scholar

[55]

M. del Pino and P. L. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method,, Math. Ann., 324 (2002), 1.  doi: 10.1007/s002080200327.  Google Scholar

[56]

M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, Ann. Inst. Henri Poincaré, 15 (1998), 127.  doi: 10.1016/S0294-1449(97)89296-7.  Google Scholar

[57]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. Partial Differential Equations, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[58]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[59]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,, Phys. A., 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[60]

P. Rabinowitz, On a class of nonlinear Schrödinger equations,, Z. Angew. Math. Phys., 43 (1992), 270.  doi: 10.1007/BF00946631.  Google Scholar

[61]

M. Ramos, Z. Q. Wang and M. Willem, Positive solutions for elliptic equations with critical growth in unbounded domains,, Calculus of Variations and Differential Equations, 410 (2000), 192.   Google Scholar

[62]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, Phys. Rev., 50 (1994), 687.  doi: 10.1103/PhysRevE.50.R687.  Google Scholar

[63]

S. Takeno and S. Homma, Classical planar Heinsenberg ferromagnet, complex scalar fields and nonlinear excitation,, Progr. Theoret. Physics, 65 (1981), 1844.  doi: 10.1143/PTP.65.1844.  Google Scholar

[64]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[65]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations,, Commun. Math. Phys., 153 (1993), 229.  doi: 10.1007/BF02096642.  Google Scholar

[66]

Y. Wang and W. Zou, Bound states to critical quasilinear Schrödinger equations,, Nonlinear Differ. Equ. Appl., 19 (2012), 19.  doi: 10.1007/s00030-011-0116-3.  Google Scholar

[67]

M. Willem, Minimax Theorems,, Birkhäuser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[68]

J. Zhang, Z. Chen and W. Zou, Standing waves for nonlinear Schrödinger equations involving critical growth,, J. Lond. Math. Soc., 90 (2014), 827.  doi: 10.1112/jlms/jdu054.  Google Scholar

[69]

X. Zhu and J. Yang, Regularity for quasilinear elliptic equations in involving critical Sobolev exponent,, System Sci. Math., 9 (1989), 47.   Google Scholar

[1]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[2]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[3]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[4]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[9]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[10]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[11]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[12]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[14]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[17]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[20]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]