• Previous Article
    Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions
  • MCRF Home
  • This Issue
  • Next Article
    Forward-backward evolution equations and applications
December  2016, 6(4): 629-651. doi: 10.3934/mcrf.2016018

An infinite time horizon portfolio optimization model with delays

1. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-7913, United States

2. 

Operations Research, North Carolina State University, Raleigh, NC 27695-7913, USA; Current address: Department of Mathematics, Lahore University of Management Sciences, Lahore, 54792, Pakistan

Received  October 2015 Revised  January 2016 Published  October 2016

In this paper we consider a portfolio optimization problem of the Merton's type over an infinite time horizon. Unlike the classical Markov model, we consider a system with delays. The problem is formulated as a stochastic control problem on an infinite time horizon and the state evolves according to a process governed by a stochastic process with delay. The goal is to choose investment and consumption controls such that the total expected discounted utility is maximized. Under certain conditions, we derive the explicit solutions for the associated Hamilton-Jacobi-Bellman (HJB) equations in a finite dimensional space for logarithmic and power utility functions. For those utility functions, verification results are established to ensure that the solutions are equal to the value functions, and the optimal controls are derived, too.
Citation: Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018
References:
[1]

T. R. Bielecki and S. R. Pliska, Risk sensitive dynamic asset management,, Appl. Math. and Optimization, 39 (1999), 337. doi: 10.1007/s002459900110. Google Scholar

[2]

M. H. Chang, T. Pang and M. Pemy, Finite difference approximations for stochastic control systems with delay,, Stoch. Anal. Appl., 26 (2008), 451. doi: 10.1080/07362990802006980. Google Scholar

[3]

M. H. Chang, T. Pang and M. Pemy, Optimal control of stochastic functional differential equations with a bounded memory,, Stochastics: An International Journal of Probability and Stochastic Processes, 80 (2008), 69. doi: 10.1080/17442500701605494. Google Scholar

[4]

M. H. Chang, T. Pang and Y. Yang, A stochastic portfolio optimization model with bounded memory,, Mathematics of Operations Research, 36 (2011), 604. doi: 10.1287/moor.1110.0508. Google Scholar

[5]

R. Cont and D. A. Fournié, Functional Ito Calculus and Stochastic Integral Representation of Martingales,, The Annuals of Probability, 41 (2013), 109. doi: 10.1214/11-AOP721. Google Scholar

[6]

B. Dupire, Functional Itô's Calculus,, Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS, (): 2009. Google Scholar

[7]

I. Elsanousi, B. Øksendal and A. Sulem, Some solvable stochastic control problems with delay,, Stochastics and Stochastics Reports, 71 (2000), 69. doi: 10.1080/17442500008834259. Google Scholar

[8]

S. Federico, B. Goldys and F. Gozzi, HJB equations for the optimal control of differential equations with delays and state constraints, I: Regularity of viscosity solutions,, SIAM Journal on Control and Optimization, 48 (2010), 4910. doi: 10.1137/09076742X. Google Scholar

[9]

S. Federico, A stochastic control problem with delay arising in a pension fund model,, Finance and Stochastics, 15 (2011), 421. doi: 10.1007/s00780-010-0146-4. Google Scholar

[10]

W. H. Fleming and D. Hernandez-Hernandez, An optimal consumption model with stochastic volatility,, Finance and Stochastics, 7 (2003), 245. doi: 10.1007/s007800200083. Google Scholar

[11]

W. H. Fleming and T. Pang, An application of stochastic control theory to financial economics,, SIAM J. Control Optimiz., 43 (2004), 502. doi: 10.1137/S0363012902419060. Google Scholar

[12]

W. H. Fleming and T. Pang, A stochastic control model of investment, production and consumption,, Quarterly of Applied Mathematics, 63 (2005), 71. doi: 10.1090/S0033-569X-04-00941-1. Google Scholar

[13]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control,, Springer, (1975). doi: 10.1007/978-1-4612-6380-7. Google Scholar

[14]

W. H. Fleming and S. J. Sheu, Risk-sensitive control and optimal investment model,, Mathematical Finance, 10 (2000), 197. doi: 10.1111/1467-9965.00089. Google Scholar

[15]

J. P. Fouque, G. Papanicolaou and K. R. Sircar, Derivatives in Financial Market with Stochastic Volatility,, Cambridge University Press, (2000). Google Scholar

[16]

F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models,, Stochastic Partial Differential Equations and Applications-VII, 245 (2006), 133. doi: 10.1201/9781420028720.ch13. Google Scholar

[17]

F. Gozzi, C. Marinelli and S. Savin, On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects,, Journal of Optimization Theory and Applications, 142 (2009), 291. doi: 10.1007/s10957-009-9524-5. Google Scholar

[18]

A, J. Koivo, Optimal control of linear stochastic systems described by functional differential equations,, Journal of Optimization Theory and Applications, 9 (1972), 161. doi: 10.1007/BF00932588. Google Scholar

[19]

V. B. Kolmanovskiĭ and T. L. Maizenberg, Optimal control of stochastic systems with aftereffect,, Avtomat. i Telemeh, 1 (1973), 47. Google Scholar

[20]

V. B. Kolmanovskiĭ and L. E. Shaĭkhet, Control of systems with aftereffect,, American Mathematical Society, 157 (1996). Google Scholar

[21]

B. Larssen, Dynamic programming in stochastic control of systems with delay,, Stochastics: An International Journal of Probability and Stochastic Processes, 74 (2002), 651. doi: 10.1080/1045112021000060764. Google Scholar

[22]

B. Larssen and N. h. Risebro, When are HJB-equations in stochastic control of delay systems finite dimensional?,, Stochastic Analysis and Applications, 21 (2003), 643. doi: 10.1081/SAP-120020430. Google Scholar

[23]

A. Lindquist, On feedback control of linear stochastic systems,, SIAM Journal on Control, 11 (1973), 323. doi: 10.1137/0311025. Google Scholar

[24]

A. Lindquist, Optimal control of linear stochastic systems with applications to time lag systems,, Information Sciences, 5 (1973), 81. doi: 10.1016/0020-0255(73)90005-4. Google Scholar

[25]

S. E. A. Mohammed, Stochastic Functional Differential Equations,, Pitman Publishing, (1984). Google Scholar

[26]

S. E. A. Mohammed, Stochastic differential equations with memory- theory, examples and applications,, Stochastic Analysis and Related Topics VI, 42 (1998), 1. Google Scholar

[27]

T. Pang, Portfolio optimization models on infinite-time horizon,, J. Optim. Theory Appl., 122 (2004), 573. doi: 10.1023/B:JOTA.0000042596.26927.2d. Google Scholar

[28]

T. Pang, Stochastic portfolio optimization with log utility,, Int. J. Theor. Appl. Finance, 9 (2006), 869. doi: 10.1142/S0219024906003858. Google Scholar

[29]

T. Pang and A. Hussain, An application of functional Ito's formula to stochastic portfolio optimization with bounded memory,, Proceedings of 2015 SIAM Conference on Control and Its Applications (CT15), (2015), 159. doi: 10.1137/1.9781611974072.23. Google Scholar

[30]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999). doi: 10.1007/978-1-4612-1466-3. Google Scholar

show all references

References:
[1]

T. R. Bielecki and S. R. Pliska, Risk sensitive dynamic asset management,, Appl. Math. and Optimization, 39 (1999), 337. doi: 10.1007/s002459900110. Google Scholar

[2]

M. H. Chang, T. Pang and M. Pemy, Finite difference approximations for stochastic control systems with delay,, Stoch. Anal. Appl., 26 (2008), 451. doi: 10.1080/07362990802006980. Google Scholar

[3]

M. H. Chang, T. Pang and M. Pemy, Optimal control of stochastic functional differential equations with a bounded memory,, Stochastics: An International Journal of Probability and Stochastic Processes, 80 (2008), 69. doi: 10.1080/17442500701605494. Google Scholar

[4]

M. H. Chang, T. Pang and Y. Yang, A stochastic portfolio optimization model with bounded memory,, Mathematics of Operations Research, 36 (2011), 604. doi: 10.1287/moor.1110.0508. Google Scholar

[5]

R. Cont and D. A. Fournié, Functional Ito Calculus and Stochastic Integral Representation of Martingales,, The Annuals of Probability, 41 (2013), 109. doi: 10.1214/11-AOP721. Google Scholar

[6]

B. Dupire, Functional Itô's Calculus,, Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS, (): 2009. Google Scholar

[7]

I. Elsanousi, B. Øksendal and A. Sulem, Some solvable stochastic control problems with delay,, Stochastics and Stochastics Reports, 71 (2000), 69. doi: 10.1080/17442500008834259. Google Scholar

[8]

S. Federico, B. Goldys and F. Gozzi, HJB equations for the optimal control of differential equations with delays and state constraints, I: Regularity of viscosity solutions,, SIAM Journal on Control and Optimization, 48 (2010), 4910. doi: 10.1137/09076742X. Google Scholar

[9]

S. Federico, A stochastic control problem with delay arising in a pension fund model,, Finance and Stochastics, 15 (2011), 421. doi: 10.1007/s00780-010-0146-4. Google Scholar

[10]

W. H. Fleming and D. Hernandez-Hernandez, An optimal consumption model with stochastic volatility,, Finance and Stochastics, 7 (2003), 245. doi: 10.1007/s007800200083. Google Scholar

[11]

W. H. Fleming and T. Pang, An application of stochastic control theory to financial economics,, SIAM J. Control Optimiz., 43 (2004), 502. doi: 10.1137/S0363012902419060. Google Scholar

[12]

W. H. Fleming and T. Pang, A stochastic control model of investment, production and consumption,, Quarterly of Applied Mathematics, 63 (2005), 71. doi: 10.1090/S0033-569X-04-00941-1. Google Scholar

[13]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control,, Springer, (1975). doi: 10.1007/978-1-4612-6380-7. Google Scholar

[14]

W. H. Fleming and S. J. Sheu, Risk-sensitive control and optimal investment model,, Mathematical Finance, 10 (2000), 197. doi: 10.1111/1467-9965.00089. Google Scholar

[15]

J. P. Fouque, G. Papanicolaou and K. R. Sircar, Derivatives in Financial Market with Stochastic Volatility,, Cambridge University Press, (2000). Google Scholar

[16]

F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models,, Stochastic Partial Differential Equations and Applications-VII, 245 (2006), 133. doi: 10.1201/9781420028720.ch13. Google Scholar

[17]

F. Gozzi, C. Marinelli and S. Savin, On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects,, Journal of Optimization Theory and Applications, 142 (2009), 291. doi: 10.1007/s10957-009-9524-5. Google Scholar

[18]

A, J. Koivo, Optimal control of linear stochastic systems described by functional differential equations,, Journal of Optimization Theory and Applications, 9 (1972), 161. doi: 10.1007/BF00932588. Google Scholar

[19]

V. B. Kolmanovskiĭ and T. L. Maizenberg, Optimal control of stochastic systems with aftereffect,, Avtomat. i Telemeh, 1 (1973), 47. Google Scholar

[20]

V. B. Kolmanovskiĭ and L. E. Shaĭkhet, Control of systems with aftereffect,, American Mathematical Society, 157 (1996). Google Scholar

[21]

B. Larssen, Dynamic programming in stochastic control of systems with delay,, Stochastics: An International Journal of Probability and Stochastic Processes, 74 (2002), 651. doi: 10.1080/1045112021000060764. Google Scholar

[22]

B. Larssen and N. h. Risebro, When are HJB-equations in stochastic control of delay systems finite dimensional?,, Stochastic Analysis and Applications, 21 (2003), 643. doi: 10.1081/SAP-120020430. Google Scholar

[23]

A. Lindquist, On feedback control of linear stochastic systems,, SIAM Journal on Control, 11 (1973), 323. doi: 10.1137/0311025. Google Scholar

[24]

A. Lindquist, Optimal control of linear stochastic systems with applications to time lag systems,, Information Sciences, 5 (1973), 81. doi: 10.1016/0020-0255(73)90005-4. Google Scholar

[25]

S. E. A. Mohammed, Stochastic Functional Differential Equations,, Pitman Publishing, (1984). Google Scholar

[26]

S. E. A. Mohammed, Stochastic differential equations with memory- theory, examples and applications,, Stochastic Analysis and Related Topics VI, 42 (1998), 1. Google Scholar

[27]

T. Pang, Portfolio optimization models on infinite-time horizon,, J. Optim. Theory Appl., 122 (2004), 573. doi: 10.1023/B:JOTA.0000042596.26927.2d. Google Scholar

[28]

T. Pang, Stochastic portfolio optimization with log utility,, Int. J. Theor. Appl. Finance, 9 (2006), 869. doi: 10.1142/S0219024906003858. Google Scholar

[29]

T. Pang and A. Hussain, An application of functional Ito's formula to stochastic portfolio optimization with bounded memory,, Proceedings of 2015 SIAM Conference on Control and Its Applications (CT15), (2015), 159. doi: 10.1137/1.9781611974072.23. Google Scholar

[30]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999). doi: 10.1007/978-1-4612-1466-3. Google Scholar

[1]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[2]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[3]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[4]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[5]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[6]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[7]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[8]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[9]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[10]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[11]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[12]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[13]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[14]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[15]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[16]

Federica Masiero. Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 223-263. doi: 10.3934/dcds.2012.32.223

[17]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

[18]

Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917

[19]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[20]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]