• Previous Article
    Control and stabilization of 2 × 2 hyperbolic systems on graphs
  • MCRF Home
  • This Issue
  • Next Article
    Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory
March  2017, 7(1): 41-52. doi: 10.3934/mcrf.2017003

A discrete hierarchy of double bracket equations and a class of negative power series

1. 

Instituto de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 67 No. 53 -108, Medellin, Colombia

2. 

Departamento de Ciencias Básicas, Universidad del Sinú, Cra 1w No. 38-153, Barrio Juan XXⅢ, Montería, Colombia

* Corresponding author:nancy.lopez@udea.edu.co

Received  October 2015 Revised  September 2016 Published  December 2016

Fund Project: The first author is supported by UdeA under SUI Project (Acta No.701,2015-03-11).

The space of negative power series of $z$ on $\{z\in \mathbb{C}:|z|>1\}$ can also be parametrized by means of a system of double bracket differential equations. To show this parametrization we introduce a group factorization for equation system. This work, for the case of a double bracket system, is a continuation of an earlier study discussed in The discrete KP hierarchy and the negative power series on the complex plane. Comp. and App. Math. 32 (2013), 483-493 for the case of one bracket system.

Citation: Nancy López Reyes, Luis E. Benítez Babilonia. A discrete hierarchy of double bracket equations and a class of negative power series. Mathematical Control & Related Fields, 2017, 7 (1) : 41-52. doi: 10.3934/mcrf.2017003
References:
[1]

L. Benitez-BabiloniaR. Felipe and N. López Reyes, Algebraic analysis of a discrete hierarchy of double bracket equations, Diff. Equ. and Dyn. Syst., 17 (2009), 77-90.  doi: 10.1007/s12591-009-0006-x.  Google Scholar

[2]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems: Foundations and Applications, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar

[3]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995. doi: 978-1-4612-8702-5.  Google Scholar

[4]

R. Felipe, Algebraic aspects of Brockett type equations, Physica D, 132 (1999), 287-297.  doi: 10.1016/S0167-2789(99)00025-1.  Google Scholar

[5]

R. Felipe and F. Ongay, Algebraic aspects of the discrete KP hierarchy, Linear Alg. and its Appl., 338 (2001), 1-17.  doi: 10.1016/S0024-3795(01)00365-2.  Google Scholar

[6]

R. Felipe and N. López Reyes, The finite discrete KP hierarchy and the rational functions Disc. Dyna. in Natu. and Soci., 2008 (2008), Article ID 792632, 10pp. doi: 10.1155/2008/792632.  Google Scholar

[7]

R. Felipe and N. López Reyes, Integrability of a double bracket system, Rev. Integración, 31 (2013), 15-23.   Google Scholar

[8]

B. Jacob and H. J. Zwart, Properties of the realization of inner functions, Math. Cont. Sign. Syst., 15 (2002), 356-379.  doi: 10.1016/S0167-6911(01)00113-X.  Google Scholar

[9]

N. López ReyesR. Felipe and T. Castro Polo, The discrete KP hierarchy and the negative power series on the complex plane, Comp. and Appl. Math., 32 (2013), 483-493.  doi: 10.1007/s40314-013-0031-9.  Google Scholar

[10]

Y. Nakamura, Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal., 22 (1991), 1744-1754.  doi: 10.1137/0522108.  Google Scholar

[11]

T.-Y. Tam, Gradiente flows and double bracket equations, Diff. Geom. Appl., 20 (2004), 209-224.  doi: 10.1016/j.difgeo.2003.10.008.  Google Scholar

[12]

H. J. Zwart, Transfer functions for infinite-dimensional systems, Syst. Cont. Lett., 52 (2004), 247-255.  doi: 10.1016/j.sysconle.2004.02.002.  Google Scholar

show all references

References:
[1]

L. Benitez-BabiloniaR. Felipe and N. López Reyes, Algebraic analysis of a discrete hierarchy of double bracket equations, Diff. Equ. and Dyn. Syst., 17 (2009), 77-90.  doi: 10.1007/s12591-009-0006-x.  Google Scholar

[2]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems: Foundations and Applications, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar

[3]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995. doi: 978-1-4612-8702-5.  Google Scholar

[4]

R. Felipe, Algebraic aspects of Brockett type equations, Physica D, 132 (1999), 287-297.  doi: 10.1016/S0167-2789(99)00025-1.  Google Scholar

[5]

R. Felipe and F. Ongay, Algebraic aspects of the discrete KP hierarchy, Linear Alg. and its Appl., 338 (2001), 1-17.  doi: 10.1016/S0024-3795(01)00365-2.  Google Scholar

[6]

R. Felipe and N. López Reyes, The finite discrete KP hierarchy and the rational functions Disc. Dyna. in Natu. and Soci., 2008 (2008), Article ID 792632, 10pp. doi: 10.1155/2008/792632.  Google Scholar

[7]

R. Felipe and N. López Reyes, Integrability of a double bracket system, Rev. Integración, 31 (2013), 15-23.   Google Scholar

[8]

B. Jacob and H. J. Zwart, Properties of the realization of inner functions, Math. Cont. Sign. Syst., 15 (2002), 356-379.  doi: 10.1016/S0167-6911(01)00113-X.  Google Scholar

[9]

N. López ReyesR. Felipe and T. Castro Polo, The discrete KP hierarchy and the negative power series on the complex plane, Comp. and Appl. Math., 32 (2013), 483-493.  doi: 10.1007/s40314-013-0031-9.  Google Scholar

[10]

Y. Nakamura, Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal., 22 (1991), 1744-1754.  doi: 10.1137/0522108.  Google Scholar

[11]

T.-Y. Tam, Gradiente flows and double bracket equations, Diff. Geom. Appl., 20 (2004), 209-224.  doi: 10.1016/j.difgeo.2003.10.008.  Google Scholar

[12]

H. J. Zwart, Transfer functions for infinite-dimensional systems, Syst. Cont. Lett., 52 (2004), 247-255.  doi: 10.1016/j.sysconle.2004.02.002.  Google Scholar

[1]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[2]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[3]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[4]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[5]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[8]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[9]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[10]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[11]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[12]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[13]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[14]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[15]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[16]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[17]

Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021047

[18]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[19]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[20]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (62)
  • HTML views (45)
  • Cited by (1)

[Back to Top]