We study the bang-bang properties of minimal time and minimal norm control problems (where the target set is the origin of the state space and the controlled system is linear and time-invariant) from a new perspective. More precisely, we study how the bang-bang property of each minimal time (or minimal norm) problem depends on a pair of parameters $(M, y_0)$ (or $(T,y_0)$ ), where $M>0$ is a bound of controls and $y_0$ is the initial state (or $T>0$ is an ending time and $y_0$ is the initial state). The controlled system may have neither the $L^∞$ -null controllability nor the backward uniqueness property.
Citation: |
[1] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, A new relation between the condensation index of complex sequences and the null controllability of parabolic systems, C. R. Math. Acad. Sci. Paris., 351 (2013), 743-746.
doi: 10.1016/j.crma.2013.09.014.![]() ![]() ![]() |
[2] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains, C. R. Math. Acad. Sci. Paris, 352 (2014), 391-396.
doi: 10.1016/j.crma.2014.03.004.![]() ![]() ![]() |
[3] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal., 267 (2014), 2077-2151.
doi: 10.1016/j.jfa.2014.07.024.![]() ![]() ![]() |
[4] |
J. Apraiz, L. Escauriaza, G. Wang and C. Zhang, Observability inequalities and measurable sets, J. Eur. Math. Soc., 16 (2014), 2433-2475.
doi: 10.4171/JEMS/490.![]() ![]() ![]() |
[5] |
N. Arada and J.-P. Raymond, Time optimal problems with Dirichlet boundary controls, Discrete Contin. Dyn. Syst., 9 (2003), 1549-1570.
doi: 10.3934/dcds.2003.9.1549.![]() ![]() ![]() |
[6] |
V. Barbu, Analysis and Control of Nonlinear Infinite-dimensional Systems, Academic Press, Boston, 1993.
![]() ![]() |
[7] |
O. Cârjǎ, On continuity of the minimal time function for distributed control systems, Boll. Un. Mat. Ital. -A, 4 (1985), 293-302.
![]() ![]() |
[8] |
J. M. Coron, Control and Nonlinearity, American Mathematical Society, 2007.
![]() ![]() |
[9] |
H. O. Fattorini, Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems, ELSEVIER, 2005.
![]() ![]() |
[10] |
H. O. Fattorini, Time-optimal control of solutions of operational differential equations, J. SIAM Control -A, 2 (1964), 54-59.
doi: 10.1137/0302005.![]() ![]() ![]() |
[11] |
H. O. Fattorini, The time-optimal control problem in Banach spaces, Appl. Math. Optim., 1 (1974/75), 163-188.
doi: 10.1007/BF01449028.![]() ![]() ![]() |
[12] |
H. O. Fattorini, Some remarks on the time optimal control problem in infinite dimension, Calculus of Variations and Optimal Control, 411 (2000), 77-96.
![]() ![]() |
[13] |
H. O. Fattorini, Existence of singular extremals and singular functionals in reachable spaces, J. Evol. Equ., 1 (2001), 325-347.
doi: 10.1007/PL00001374.![]() ![]() ![]() |
[14] |
H. O. Fattorini, Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. -B, 31 (2011), 2203-2218.
doi: 10.1016/S0252-9602(11)60394-9.![]() ![]() ![]() |
[15] |
W. Gong and N. Yan, Finite element method and its error estimates for the time optimal controls of heat equation, Int. J. Numer. Anal. Model., 13 (2016), 265-279.
![]() ![]() |
[16] |
F. Gozzi and P. Loreti, Regularity of the minimum time function and minimal energy problems: the linear case, SIAM J. Control Optim., 37 (1999), 1195-1221.
doi: 10.1137/S0363012996312763.![]() ![]() ![]() |
[17] |
K. Ito and K. Kunisch, Semismooth Newton methods for time-optimal control for a class of ODEs, SIAM J. Control Optim., 48 (2010), 3997-4013.
doi: 10.1137/090753905.![]() ![]() ![]() |
[18] |
K. Kunisch and L. Wang, Time optimal control of the heat equation with pointwise control constraints, ESAIM Control Optim. Calc. Var., 19 (2013), 460-485.
doi: 10.1051/cocv/2012017.![]() ![]() ![]() |
[19] |
K. Kunisch and L. Wang, Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints, J. Math. Anal. Appl., 395 (2012), 114-130.
doi: 10.1016/j.jmaa.2012.05.028.![]() ![]() ![]() |
[20] |
X. Li and J. Yong,
Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.
doi: 10.1007/978-1-4612-4260-4.![]() ![]() ![]() |
[21] |
P. Lin and G. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255.
doi: 10.1016/j.matpur.2013.06.001.![]() ![]() ![]() |
[22] |
J. Lohéac and M. Tucsnak, Maximum principle and bang-bang property of time optimal controls for Schrödinger-type systems, SIAM J. Control Optim., 51 (2013), 4016-4038.
doi: 10.1137/120872437.![]() ![]() ![]() |
[23] |
J. Lohéac and E. Zuazua, Norm saturating property of time optimal controls for wave-type equations, 2016, <hal-01258878>.
![]() |
[24] |
H. Lou, J. Wen and Y. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. Fields, 4 (2014), 289-314.
doi: 10.3934/mcrf.2014.4.289.![]() ![]() ![]() |
[25] |
Q. Lü, Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations, Acta Math. Sin. (Engl. Ser.), 26 (2010), 2377-2386.
doi: 10.1007/s10114-010-9051-1.![]() ![]() ![]() |
[26] |
S. Micu, I. Roventa and M. Tucsnak, Time optimal boundary controls for the heat equation, J. Funct. Anal., 263 (2012), 25-49.
doi: 10.1016/j.jfa.2012.04.009.![]() ![]() ![]() |
[27] |
V. Mizel and T. Seidman, An abstract bang-bang principle and time-optimal boundary control of the heat equation, SIAM J. Control Optim., 35 (1997), 1204-1216.
doi: 10.1137/S0363012996265470.![]() ![]() ![]() |
[28] |
A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: Ill-posedness and remedies, Inverse Problems, 26 (2010), 085018, 39pp.
doi: 10.1088/0266-5611/26/8/085018.![]() ![]() ![]() |
[29] |
A. Pazy, Semigroups of Linear Operatots and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
[30] |
N. V. Petrov, The Bellman problem for a time-optimality problem, Prikl. Mat. Meh., 34 (1970), 820-826.
![]() ![]() |
[31] |
K. D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., 15 (2013), 681-703.
doi: 10.4171/JEMS/371.![]() ![]() ![]() |
[32] |
K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247.
doi: 10.1016/j.jfa.2010.04.015.![]() ![]() ![]() |
[33] |
K. D. Phung, L. Wang and C. Zhang, Bang-bang property for time optimal control of semilinear heat equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 477-499.
doi: 10.1016/j.anihpc.2013.04.005.![]() ![]() ![]() |
[34] |
K. D. Phung, G. Wang and X. Zhang, On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst. -B, 8 (2007), 925-941.
doi: 10.3934/dcdsb.2007.8.925.![]() ![]() ![]() |
[35] |
W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill Companies, 1987.
![]() ![]() |
[36] |
E. J. P. G. Schmidt, The "bang-bang" principle for the time-optimal problem in boundary control of the heat equation, SIAM J. Control Optim., 18 (1980), 101-107.
doi: 10.1137/0318008.![]() ![]() ![]() |
[37] |
C. Silva and E. Trélat, Smooth regularization of bang-bang optimal control problems, IEEE Trans. Automat. Control, 55 (2010), 2488-2499.
doi: 10.1109/TAC.2010.2047742.![]() ![]() ![]() |
[38] |
E. D. Sontag, Mathematical Control Theory: Deterministic Finite-Dimensional Systems, 2nd edition, Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0577-7.![]() ![]() |
[39] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag AG, 2009.
doi: 10.1007/978-3-7643-8994-9.![]() ![]() ![]() |
[40] |
G. Wang, L∞-null controllability for the heat equation and its consequences for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701-1720.
doi: 10.1137/060678191.![]() ![]() ![]() |
[41] |
G. Wang and Y. Xu, Equivalence of three different kinds of optimal control problems for heat equations and its applications, SIAM J. Control Optim., 51 (2013), 848-880.
doi: 10.1137/110852449.![]() ![]() ![]() |
[42] |
G. Wang and Y. Xu, Advantages for controls imposed in a proper subset, Discrete Contin. Dyn. Syst. -B, 18 (2013), 2427-2439.
doi: 10.3934/dcdsb.2013.18.2427.![]() ![]() ![]() |
[43] |
G. Wang, Y. Xu and Y. Zhang, Attainable subspaces and the bang-bang property of time optimal controls for heat equations, SIAM J. Control Optim., 53 (2015), 592-621.
doi: 10.1137/140966022.![]() ![]() ![]() |
[44] |
G. Wang and C. Zhang, Observability inequalities from measurable sets for some evolution equations, preprint, arXiv: 1406.3422v1.
![]() |
[45] |
G. Wang and G. Zheng, An approach to the optimal time for a time optimal control problem of an internally controlled heat equation, SIAM J. Control Optim., 50 (2012), 601-628.
doi: 10.1137/100793645.![]() ![]() ![]() |
[46] |
G. Wang and E. Zuazua, On the equivalence of minimal time and minimal norm controls for internally controlled heat equations, SIAM J. Control Optim., 50 (2012), 2938-2958.
doi: 10.1137/110857398.![]() ![]() ![]() |
[47] |
H. Yu, Approximation of time optimal controls for heat equations with perturbations in the system potential, SIAM J. Control Optim., 52 (2014), 1663-1692.
doi: 10.1137/120904251.![]() ![]() ![]() |
[48] |
C. Zhang, An observability estimate for the heat equation from a product of two measurable sets, J. Math. Anal. Appl., 396 (2012), 7-12.
doi: 10.1016/j.jmaa.2012.05.082.![]() ![]() ![]() |
[49] |
C. Zhang, The time optimal control with constraints of the rectangular type for linear time-varying ODEs, SIAM J. Control Optim., 51 (2013), 1528-1542.
doi: 10.1137/110858999.![]() ![]() ![]() |
[50] |
G. Zheng and B. Ma, A time optimal control problem of some linear switching controlled ordinary differential equations, Adv. Difference Equ., 2012 (2012), 1-7.
doi: 10.1186/1687-1847-2012-52.![]() ![]() ![]() |