-
Previous Article
Regularity results for a time-optimal control problem in the space of probability measures
- MCRF Home
- This Issue
- Next Article
The cost of controlling weakly degenerate parabolic equations by boundary controls
1. | Dipartimento di Matematica, Universitá di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy |
2. | Institut de Mathématiques de Toulouse, UMR CNRS 5219, Université Paul Sabatier Toulouse Ⅲ, 118 route de Narbonne, 31 062 Toulouse Cedex 4, France |
$u_t - (x^α u_x)_x =0 \;\;x∈(0,1),\ t ∈ (0,T) ,$ |
$ x=0$ |
$T$ |
$ H^1$ |
$ α ∈ [0,1)$ |
$ \mathit{\alpha } \to {{\rm{1}}^{\rm{ - }}}$ |
$ \mathit{T} \to {{\rm{0}}^{\rm{ + }}}$ |
Next, thanks to the special structure of the eigenfunctions of the problem, we investigate and obtain (partial) results concerning the structure of the reachable states.
Our approach is based on the moment method developed by Fattorini and Russell [
References:
[1] |
F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli,
Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.
doi: 10.1007/s00028-006-0222-6. |
[2] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa,
The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl., 96 (2011), 555-590.
doi: 10.1016/j.matpur.2011.06.005. |
[3] |
K. Beauchard, P. Cannarsa and R. Guglielmi,
Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc. (JEMS), 16 (2014), 67-101.
doi: 10.4171/JEMS/428. |
[4] |
M. Campiti, G. Metafune and D. Pallara,
Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36.
doi: 10.1007/PL00005959. |
[5] |
P. Cannarsa, G. Fragnelli and D. Rocchetti,
Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2 (2007), 695-715.
doi: 10.3934/nhm.2007.2.695. |
[6] |
P. Cannarsa, G. Fragnelli and D. Rocchetti,
Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., 8 (2008), 583-616.
doi: 10.1007/s00028-008-0353-34. |
[7] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Null Controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.
|
[8] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.
doi: 10.1137/04062062X. |
[9] |
P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications Memoirs of the American Mathematical Society, 239 (2016), ix+209 pp.
doi: 10.1090/memo/1133. |
[10] |
P. Cannarsa, P. Martinez and J. Vancostenoble, {The cost of controlling degenerate parabolic equations by locally distributed controls}, in preparation. Google Scholar |
[11] |
P. Cannarsa, J. Tort and M. Yamamoto,
Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal., 91 (2012), 1409-1425.
doi: 10.1080/00036811.2011.639766. |
[12] |
J. M. Coron and S. Guerrero,
Singular optimal control: A linear 1-D parabolic-hyperbolic example, Asymp. Anal., 44 (2005), 237-257.
|
[13] |
J. Dardé and S. Ervedoza, On the reachable set for the one-dimensional heat equation (2016), arXiv: 1609.02692. Google Scholar |
[14] |
S. Ervedoza and E. Zuazua,
Sharp observability estimates for heat equations, Arch. Ration. Mech. Anal., 202 (2011), 975-1017.
doi: 10.1007/s00205-011-0445-8. |
[15] |
S. Ervedoza and E. Zuazua,
Observability of heat processes by transmutation without geometric restrictions, Math. Control Relat. Fields, 1 (2011), 177-187.
doi: 10.3934/mcrf.2011.1.177. |
[16] |
L. Escauriaza, G. Seregin and V. Šverák,
Backward uniqueness for the heat operator in half-space, St. Petersburg Math. J., 15 (2004), 139-148.
doi: 10.1090/S1061-0022-03-00806-9. |
[17] |
W. N. Everitt and A. Zettl,
On a class of integral inequalities, J. London Math. Soc., 17 (1978), 291-303.
doi: 10.1112/jlms/s2-17.2.291. |
[18] |
W. N. Everitt, A catalogue of Sturm-Liouville differential equations, Sturm-Liouville Theory, Birkhäuser, Basel, (2005), 271-331.
doi: 10.1007/3-7643-7359-8_12. |
[19] |
H. O. Fattorini and D. L. Russel,
Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 43 (1971), 272-292.
doi: 10.1007/BF00250466. |
[20] |
H. O. Fattorini and D. L. Russel,
Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 13 (1974/75), 1-13.
doi: 10.1090/qam/510972. |
[21] |
H. O. Fattorini,
Boundary control of temperature distributions in a parallelepipedon, SIAM J. Control, 13 (1975), 1-13.
doi: 10.1137/0313001. |
[22] |
E. Fernandez-Cara and E. Zuazua,
The cost of approximate controllability for heat equations: The linear case, Adv. Differential equations, 5 (2000), 465-514.
|
[23] |
A. V. Fursikov and O. Yu. Imanuvilov,
Controllability of Evolution Equations, Lecture Notes Ser. , 34, Seoul National University, Seoul, Korea, 1996. |
[24] |
O. Glass,
A complex-analytic approach to the problem of uniform controllability of transport equation in the vanishing viscosity limit, J. Funct. Anal., 258 (2010), 852-868.
doi: 10.1016/j.jfa.2009.06.035. |
[25] |
M. Gueye,
Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim, 52 (2014), 2037-2054.
doi: 10.1137/120901374. |
[26] |
E. N. Güichal,
A lower bound of the norm of the control operator for the heat equation, Journal of Mathematical Analysis and Applications, 110 (1985), 519-527.
doi: 10.1016/0022-247X(85)90313-0. |
[27] |
S. Hansen,
Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems, Journal of Math. Anal. and Appl., 158 (1991), 487-508.
doi: 10.1016/0022-247X(91)90252-U. |
[28] |
E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen, Neunte Auflage. Mit einem Vorwort von Detlef Kamke. B. G. Teubner, Stuttgart, 1977. |
[29] |
V. Komornik, Functional Analysis, Springer editions, 2016. Google Scholar |
[30] |
V. Komornik and P. Loreti,
Fourier Series in Control Theory, Springer, Berlin, 2005. |
[31] |
J. Lagnese,
Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21 (1983), 68-85.
doi: 10.1137/0321004. |
[32] |
L. J. Landau,
Bessel functions: monotonicity and bounds, Journal of the London Mathematical Society, 61 (2000), 197-215.
doi: 10.1112/S0024610799008352. |
[33] |
N. N. Lebedev,
Special Functions and their Applications, Dover Publications, New York, 1972. |
[34] |
J.-L. Lions and E. Zuazua,
On the cost of controlling unstable systems: The case of boundary controls, J. Anal. Math., 73 (1997), 225-249.
doi: 10.1007/BF02788145. |
[35] |
P. Lissy,
On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension, SIAM J. Control Optim., 52 (2014), 2651-2676.
doi: 10.1137/140951746. |
[36] |
P. Lissy,
Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation, J. Differential Equations, 259 (2015), 5331-5352.
doi: 10.1016/j.jde.2015.06.031. |
[37] |
L. Lorch and M. E. Muldoon,
Monotonic sequences related to zeros of Bessel functions, Numer. Algor, 49 (2008), 221-233.
doi: 10.1007/s11075-008-9189-4. |
[38] |
P. Martin, L. Rosier and P. Rouchon,
Null controllability of one-dimensional parabolic equations using flatness, Automatica J. IFAC, 50 (2014), 3067-3076.
doi: 10.1016/j.automatica.2014.10.049. |
[39] |
P. Martin, L. Rosier and P. Rouchon,
On the reachable states for the boundary control of the heat equation, Applied Mathematics Research eXpress, (2016), 181-216.
doi: 10.1093/amrx/abv013. |
[40] |
P. Martinez and J. Vancostenoble,
Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Eq, 6 (2006), 325-362.
doi: 10.1007/s00028-006-0214-6. |
[41] |
L. Miller,
Geometric bounds on the growth rate of null controllability cost for the heat equation in small time, J. Differential Equations, 204 (2004), 202-226.
doi: 10.1016/j.jde.2004.05.007. |
[42] |
F. W. Olver,
Asymptotics and Special Functions, New York, Academic press, 1974. |
[43] |
C. K. Qu and R. Wong,
"Best possible" upper and lower bounds for the zeros of the Bessel function $ J_ν(x)$, Trans. Amer. Math. Soc., 351 (1999), 2833-2859.
doi: 10.1090/S0002-9947-99-02165-0. |
[44] |
R. M. Redheffer,
Elementary remarks on completeness, Duke Math. Journal, 35 (1968), 103-116.
doi: 10.1215/S0012-7094-68-03511-4. |
[45] |
L. Schwartz,
Étude des Sommes D'exponentielles, deuxiéme édition. Paris, Hermann, 1959. |
[46] |
T. Seidman,
Time invarinace of the reachable set for linear control problems, J. Math. Annal. Appl., 72 (1979), 17-20.
doi: 10.1016/0022-247X(79)90271-3. |
[47] |
T. Seidman,
Two results on exact boundary control of parabolic equations, Appl. Math. Optim., 11 (1984), 145-152.
doi: 10.1007/BF01442174. |
[48] |
T. I. Seidman, S. A. Avdonin and S. A. Ivanov,
The "window problem" for series of complex exponentials, J. Fourier Anal. Appl., 6 (2000), 233-254.
doi: 10.1007/BF02511154. |
[49] |
G. Tenenbaum and M. Tucsnak,
New blow-up rates for fast controls of Schrodinger and heat equations, J. Differential Equations, 243 (2007), 70-100.
doi: 10.1016/j.jde.2007.06.019. |
[50] |
G. N. Watson,
A Treatise on the Theory of Bessel Functions second edition, Cambridge University Press, Cambridge, England, 1944. |
[51] |
R. M. Young,
An Introduction to Nonharmonic Fourier Series, Academic Press, 1980. |
show all references
References:
[1] |
F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli,
Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.
doi: 10.1007/s00028-006-0222-6. |
[2] |
F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa,
The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl., 96 (2011), 555-590.
doi: 10.1016/j.matpur.2011.06.005. |
[3] |
K. Beauchard, P. Cannarsa and R. Guglielmi,
Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc. (JEMS), 16 (2014), 67-101.
doi: 10.4171/JEMS/428. |
[4] |
M. Campiti, G. Metafune and D. Pallara,
Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36.
doi: 10.1007/PL00005959. |
[5] |
P. Cannarsa, G. Fragnelli and D. Rocchetti,
Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2 (2007), 695-715.
doi: 10.3934/nhm.2007.2.695. |
[6] |
P. Cannarsa, G. Fragnelli and D. Rocchetti,
Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., 8 (2008), 583-616.
doi: 10.1007/s00028-008-0353-34. |
[7] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Null Controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.
|
[8] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.
doi: 10.1137/04062062X. |
[9] |
P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications Memoirs of the American Mathematical Society, 239 (2016), ix+209 pp.
doi: 10.1090/memo/1133. |
[10] |
P. Cannarsa, P. Martinez and J. Vancostenoble, {The cost of controlling degenerate parabolic equations by locally distributed controls}, in preparation. Google Scholar |
[11] |
P. Cannarsa, J. Tort and M. Yamamoto,
Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal., 91 (2012), 1409-1425.
doi: 10.1080/00036811.2011.639766. |
[12] |
J. M. Coron and S. Guerrero,
Singular optimal control: A linear 1-D parabolic-hyperbolic example, Asymp. Anal., 44 (2005), 237-257.
|
[13] |
J. Dardé and S. Ervedoza, On the reachable set for the one-dimensional heat equation (2016), arXiv: 1609.02692. Google Scholar |
[14] |
S. Ervedoza and E. Zuazua,
Sharp observability estimates for heat equations, Arch. Ration. Mech. Anal., 202 (2011), 975-1017.
doi: 10.1007/s00205-011-0445-8. |
[15] |
S. Ervedoza and E. Zuazua,
Observability of heat processes by transmutation without geometric restrictions, Math. Control Relat. Fields, 1 (2011), 177-187.
doi: 10.3934/mcrf.2011.1.177. |
[16] |
L. Escauriaza, G. Seregin and V. Šverák,
Backward uniqueness for the heat operator in half-space, St. Petersburg Math. J., 15 (2004), 139-148.
doi: 10.1090/S1061-0022-03-00806-9. |
[17] |
W. N. Everitt and A. Zettl,
On a class of integral inequalities, J. London Math. Soc., 17 (1978), 291-303.
doi: 10.1112/jlms/s2-17.2.291. |
[18] |
W. N. Everitt, A catalogue of Sturm-Liouville differential equations, Sturm-Liouville Theory, Birkhäuser, Basel, (2005), 271-331.
doi: 10.1007/3-7643-7359-8_12. |
[19] |
H. O. Fattorini and D. L. Russel,
Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 43 (1971), 272-292.
doi: 10.1007/BF00250466. |
[20] |
H. O. Fattorini and D. L. Russel,
Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 13 (1974/75), 1-13.
doi: 10.1090/qam/510972. |
[21] |
H. O. Fattorini,
Boundary control of temperature distributions in a parallelepipedon, SIAM J. Control, 13 (1975), 1-13.
doi: 10.1137/0313001. |
[22] |
E. Fernandez-Cara and E. Zuazua,
The cost of approximate controllability for heat equations: The linear case, Adv. Differential equations, 5 (2000), 465-514.
|
[23] |
A. V. Fursikov and O. Yu. Imanuvilov,
Controllability of Evolution Equations, Lecture Notes Ser. , 34, Seoul National University, Seoul, Korea, 1996. |
[24] |
O. Glass,
A complex-analytic approach to the problem of uniform controllability of transport equation in the vanishing viscosity limit, J. Funct. Anal., 258 (2010), 852-868.
doi: 10.1016/j.jfa.2009.06.035. |
[25] |
M. Gueye,
Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim, 52 (2014), 2037-2054.
doi: 10.1137/120901374. |
[26] |
E. N. Güichal,
A lower bound of the norm of the control operator for the heat equation, Journal of Mathematical Analysis and Applications, 110 (1985), 519-527.
doi: 10.1016/0022-247X(85)90313-0. |
[27] |
S. Hansen,
Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems, Journal of Math. Anal. and Appl., 158 (1991), 487-508.
doi: 10.1016/0022-247X(91)90252-U. |
[28] |
E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen, Neunte Auflage. Mit einem Vorwort von Detlef Kamke. B. G. Teubner, Stuttgart, 1977. |
[29] |
V. Komornik, Functional Analysis, Springer editions, 2016. Google Scholar |
[30] |
V. Komornik and P. Loreti,
Fourier Series in Control Theory, Springer, Berlin, 2005. |
[31] |
J. Lagnese,
Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21 (1983), 68-85.
doi: 10.1137/0321004. |
[32] |
L. J. Landau,
Bessel functions: monotonicity and bounds, Journal of the London Mathematical Society, 61 (2000), 197-215.
doi: 10.1112/S0024610799008352. |
[33] |
N. N. Lebedev,
Special Functions and their Applications, Dover Publications, New York, 1972. |
[34] |
J.-L. Lions and E. Zuazua,
On the cost of controlling unstable systems: The case of boundary controls, J. Anal. Math., 73 (1997), 225-249.
doi: 10.1007/BF02788145. |
[35] |
P. Lissy,
On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension, SIAM J. Control Optim., 52 (2014), 2651-2676.
doi: 10.1137/140951746. |
[36] |
P. Lissy,
Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation, J. Differential Equations, 259 (2015), 5331-5352.
doi: 10.1016/j.jde.2015.06.031. |
[37] |
L. Lorch and M. E. Muldoon,
Monotonic sequences related to zeros of Bessel functions, Numer. Algor, 49 (2008), 221-233.
doi: 10.1007/s11075-008-9189-4. |
[38] |
P. Martin, L. Rosier and P. Rouchon,
Null controllability of one-dimensional parabolic equations using flatness, Automatica J. IFAC, 50 (2014), 3067-3076.
doi: 10.1016/j.automatica.2014.10.049. |
[39] |
P. Martin, L. Rosier and P. Rouchon,
On the reachable states for the boundary control of the heat equation, Applied Mathematics Research eXpress, (2016), 181-216.
doi: 10.1093/amrx/abv013. |
[40] |
P. Martinez and J. Vancostenoble,
Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Eq, 6 (2006), 325-362.
doi: 10.1007/s00028-006-0214-6. |
[41] |
L. Miller,
Geometric bounds on the growth rate of null controllability cost for the heat equation in small time, J. Differential Equations, 204 (2004), 202-226.
doi: 10.1016/j.jde.2004.05.007. |
[42] |
F. W. Olver,
Asymptotics and Special Functions, New York, Academic press, 1974. |
[43] |
C. K. Qu and R. Wong,
"Best possible" upper and lower bounds for the zeros of the Bessel function $ J_ν(x)$, Trans. Amer. Math. Soc., 351 (1999), 2833-2859.
doi: 10.1090/S0002-9947-99-02165-0. |
[44] |
R. M. Redheffer,
Elementary remarks on completeness, Duke Math. Journal, 35 (1968), 103-116.
doi: 10.1215/S0012-7094-68-03511-4. |
[45] |
L. Schwartz,
Étude des Sommes D'exponentielles, deuxiéme édition. Paris, Hermann, 1959. |
[46] |
T. Seidman,
Time invarinace of the reachable set for linear control problems, J. Math. Annal. Appl., 72 (1979), 17-20.
doi: 10.1016/0022-247X(79)90271-3. |
[47] |
T. Seidman,
Two results on exact boundary control of parabolic equations, Appl. Math. Optim., 11 (1984), 145-152.
doi: 10.1007/BF01442174. |
[48] |
T. I. Seidman, S. A. Avdonin and S. A. Ivanov,
The "window problem" for series of complex exponentials, J. Fourier Anal. Appl., 6 (2000), 233-254.
doi: 10.1007/BF02511154. |
[49] |
G. Tenenbaum and M. Tucsnak,
New blow-up rates for fast controls of Schrodinger and heat equations, J. Differential Equations, 243 (2007), 70-100.
doi: 10.1016/j.jde.2007.06.019. |
[50] |
G. N. Watson,
A Treatise on the Theory of Bessel Functions second edition, Cambridge University Press, Cambridge, England, 1944. |
[51] |
R. M. Young,
An Introduction to Nonharmonic Fourier Series, Academic Press, 1980. |
[1] |
Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021024 |
[2] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[3] |
K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 |
[4] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[5] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[6] |
Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023 |
[7] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[8] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[9] |
Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070 |
[10] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[11] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[12] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[13] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[14] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[15] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021009 |
[16] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[17] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[18] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[19] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[20] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]