Dynamic flux balance analysis of a bioreactor is based on the coupling between a dynamic problem, which models the evolution of biomass, feeding substrates and metabolites, and a linear program, which encodes the metabolic activity inside cells. We cast the problem in the language of optimal control and propose a hybrid formulation to model the full coupling between macroscopic and microscopic level. On a given location of the hybrid system we analyze necessary conditions given by the Pontryagin Maximum Principle and discuss the presence of singular arcs. For the multi-input case, under suitable assumptions, we prove that generically with respect to initial conditions optimal controls are bang-bang. For the single-input case the result is even stronger as we show that optimal controls are bang-bang.
Citation: |
[1] |
J. Alford, Bioprocess control: Advances and challenges, Computers & Chemical Engineering, 30 (2006), 1464-1475.
doi: 10.1016/j.compchemeng.2006.05.039.![]() ![]() |
[2] |
P. T. Benavides and U. Diwekar, Optimal control of biodiesel production in a batch reactor: Part Ⅰ: Deterministic control, Fuel, 94 (2012), 211-217.
![]() |
[3] |
M. S. Branicky, Introduction to hybrid systems, In Handbook of Networked and Embedded Control Systems, Control Eng. , pages 91-116. Birkhäuser Boston, Boston, MA, 2005.
doi: 10.1007/0-8176-4404-0_5.![]() ![]() ![]() |
[4] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.
![]() ![]() |
[5] |
É. Busvelle and J.-P. Gauthier, On determining unknown functions in differential systems, with an application to biological reactors, ESAIM Control Optim. Calc. Var., 9 (2003), 509-551.
doi: 10.1051/cocv:2003025.![]() ![]() ![]() |
[6] |
M. Caponigro, R. Ghezzi, B. Piccoli and E. Trélat, Regularization of chattering phenomena via bounded variation control, preprint, 2013, arXiv: 1303.5796.
![]() |
[7] |
Y. Chitour, F. Jean and E. Trélat, Singular trajectories of control-affine systems, SIAM J. Control Optim., 47 (2008), 1078-1095.
doi: 10.1137/060663003.![]() ![]() ![]() |
[8] |
M. W. Covert, C. Schilling and B. Palsson, Regulation of gene expression in flux balance models of metabolism, J Theor Biol., 213 (2001), 73-88.
![]() |
[9] |
M. W. Covert, N. Xiao, T. J. Chen and J. R. Karr, Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli, Bioinformatics, 24 (2008), 2044-2050.
![]() |
[10] |
M. D. Di Benedetto and A. Sangiovanni-Vincentelli, Hybrid Systems: Computation and Control Lecture Notes in Comput. Sci. 2034. Springer-Verlag, Berlin, Heidelberg, 2001.
![]() |
[11] |
T. Eevera, K. Rajendran and S. Saradha, Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions, Renewable Energy, 34 (2009), 762-765.
doi: 10.1016/j.renene.2008.04.006.![]() ![]() |
[12] |
A. T. Fuller, Study of an optimum non-linear control system, J. Electronics Control (1), 15 (1963), 63-71.
doi: 10.1080/00207216308937555.![]() ![]() ![]() |
[13] |
M. Garavello and B. Piccoli, Hybrid necessary principle, SIAM J. Control Optim., 43 (2005), 1867-1887 (electronic).
doi: 10.1137/S0363012903416219.![]() ![]() ![]() |
[14] |
J.-P. Gauthier, H. Hammouri and S. Othman, A simple observer for nonlinear systems applications to bioreactors, IEEE Trans. Automat. Control, 37 (1992), 875-880.
doi: 10.1109/9.256352.![]() ![]() ![]() |
[15] |
J. L. Hjersted and M. A. Henson, Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models, Biotechnol. Prog., 22 (2006), 1239-1248.
![]() |
[16] |
J. L. Hjersted and M. A. Henson, Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae, IET Systems Biology, 3 (2009), 167-179.
![]() |
[17] |
J. L. Hjersted, M. A. Henson and R. Mahadevan, Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and {E}thanol Production in Fed-Batch Culture, Biotechnology and Bioengineering, 97 (2007), 1190-1204.
![]() |
[18] |
E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tubercolosis model, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473-482.
doi: 10.3934/dcdsb.2002.2.473.![]() ![]() ![]() |
[19] |
D. Kirschner, S. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792.
doi: 10.1007/s002850050076.![]() ![]() ![]() |
[20] |
A. Kremling, K. Bettenbrock and E. Gilles, Analysis of global control of Escherichia coli carbohydrate uptake BMC Systems Biology, 1 (2007), p42.
doi: 10.1186/1752-0509-1-42.![]() ![]() |
[21] |
R. Mahadevan, J. Edwards and F. Doyle, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys J., 83 (2002), 1331-1340.
![]() |
[22] |
J. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optimal Control Applications Methods, 20 (1999), 145-164.
doi: 10.1002/(SICI)1099-1514(199905/06)20:3<145::AID-OCA651>3.0.CO;2-J.![]() ![]() ![]() |
[23] |
B. O. Palsson, Systems Biology -Property of Reconstructed Networks, Cambridge University Press, 2006.
![]() |
[24] |
L. S. Pontryagin, V. G. Boltyanskiǐ, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes ,"Nauka", Moscow, fourth edition, 1983.
![]() ![]() |
[25] |
A. Rapaport and D. Dochain, Minimal time control of fed-batch processes with growth functions having several maxima, IEEE Trans. Automat. Contr., 56 (2011), 2671-2676.
doi: 10.1109/TAC.2011.2159424.![]() ![]() ![]() |
[26] |
H. J. Sussmann, A nonsmooth hybrid maximum principle, In Stability and stabilization of nonlinear systems (Ghent, 1999), volume 246 of Lecture Notes in Control and Inform. Sci. , pages 325-354. Springer, London, 1999.
doi: 10.1007/1-84628-577-1_17.![]() ![]() ![]() |
[27] |
S. Tiwari, P. Verma, P. Singh and R. Tuli, Plants as bioreactors for the production of vaccine antigens, Biotechnology Advances, 27 (2009), 449-467.
doi: 10.1016/j.biotechadv.2009.03.006.![]() ![]() |
[28] |
K. Yamuna Rani and V. S. Ramachandra Rao, Control of fermenters -a review, Bioprocess and Biosystems Engineering, 21 (1999), 77-88.
doi: 10.1007/PL00009066.![]() ![]() |