September  2017, 7(3): 369-391. doi: 10.3934/mcrf.2017013

Boundary feedback stabilization of the monodomain equations

1. 

Institute for Mathematics and Scientific Computing, Karl-Franzens-Universität Graz, Heinrichstr. 36,8010 Graz, Austria

2. 

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstraße 69, A-4040 Linz, Austria

* Corresponding author: Tobias Breiten

Received  July 2016 Revised  November 2016 Published  July 2017

Boundary feedback control for a coupled nonlinear PDE-ODE system (in the two and three dimensional cases) is studied. Particular focus is put on the monodomain equations arising in the context of cardiac electrophysiology. Neumann as well as Dirichlet based boundary control laws are obtained by an algebraic operator Riccati equation associated with the linearized system. Local exponential stability of the nonlinear closed loop system is shown by a fixed-point argument. Numerical examples are given for a finite element discretization of the two dimensional monodomain equations.

Citation: Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control & Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013
References:
[1]

R. Adams and J. Fournier, Sobolev Spaces, Academic Press, 2003.  Google Scholar

[2]

M. Badra, Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete Contin. Dyn. Syst., 32 (2012), 1169-1208.  doi: 10.3934/dcds.2012.32.1169.  Google Scholar

[3]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers. application to the Navier-Stokes system, SIAM Journal on Control and Optimization, 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[4]

V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM: Control, Optimisation and Calculus of Variations, 9 (2003), 197-206.  doi: 10.1051/cocv:2003009.  Google Scholar

[5]

V. BarbuI. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoirs of the American Mathematical Society, 181 (2006), x+128 pp.  doi: 10.1090/memo/0852.  Google Scholar

[6]

V. Barbu and G. Wang, Feedback stabilization of semilinear heat equations, in Abstract and Applied Analysis, Hindawi Publishing Corporation, 12 (2003), 697-714.  doi: 10.1155/S1085337503212100.  Google Scholar

[7]

P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: A state of the art survey, GAMM-Mitteilungen, 36 (2013), 32-52.  doi: 10.1002/gamm.201310003.  Google Scholar

[8]

A. Bensoussan, G. D. Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, vol. 1, Birkhäuser Boston, Inc. , Boston, MA, 1992.  Google Scholar

[9]

T. Breiten and K. Kunisch, Riccati-based feedback control of the monodomain equations with the FitzHugh-Nagumo model, SIAM Journal on Control and Optimization, 52 (2014), 4057-4081.  doi: 10.1137/140964552.  Google Scholar

[10]

T. Breiten and K. Kunisch, Compensator design for the monodomain equations with the Fitzhugh-Nagumo model, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 241-262.  doi: 10.1051/cocv/2015047.  Google Scholar

[11]

J. BurnsE. Sachs and L. Zietsman, Mesh independence of Kleinman-Newton iterations for Riccati equations in Hilbert space, SIAM Journal on Control and Optimization, 47 (2008), 2663-2692.  doi: 10.1137/060653962.  Google Scholar

[12]

E. CasasC. Ryll and F. Tröltzsch, Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation, SIAM Journal on Control and Optimization, 53 (2015), 2168-2202.  doi: 10.1137/140978855.  Google Scholar

[13]

R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[14]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society, 166 (2013), viii+114 pp. doi: 10.1090/memo/0788.  Google Scholar

[15]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.  Google Scholar

[16]

A. Fursikov and O. Imanuvilov, Controllability of Evolution Equations, Seoul National University, Korea, 1996, Lecture Notes no. 34.  Google Scholar

[17]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, SIAM, 1985.  Google Scholar

[18]

G. Grubb and V. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods, Mathematica Scandinavica, 69 (1991), 217-290.  doi: 10.7146/math.scand.a-12380.  Google Scholar

[19]

J. Keener and J. Sneyd, Mathematical Physiology, Vol. I: Cellular Physiology, vol. 8 of Interdisciplinary Applied Mathematics, 2nd edition, Springer, New York, 2009. doi: 10.1007/978-0-387-79388-7.  Google Scholar

[20]

D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Transactions on Automatic Control, 13 (1968), 114-115.  doi: 10.1109/TAC.1968.1098829.  Google Scholar

[21]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems: Continuous and Approximation Theories, Cambridge University Press, 2000.  Google Scholar

[22]

J. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. Ⅰ/Ⅱ, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Springer-Verlag, Berlin, 1972. Google Scholar

[23]

B. NielsenT. RuudG. Lines and A. Tveito, Optimal monodomain approximations of the bidomain equations, Applied Mathematics and Computation, 184 (2007), 276-290.  doi: 10.1016/j.amc.2006.05.158.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), 790-828.  doi: 10.1137/050628726.  Google Scholar

[26]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, Journal de Mathématiques Pures Et Appliquées, 87 (2007), 627-669.  doi: 10.1016/j.matpur.2007.04.002.  Google Scholar

[27]

O. Savin and E. Valdinoci, Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM Journal on Mathematical Analysis, 43 (2011), 2675-2687.  doi: 10.1137/110831040.  Google Scholar

[28]

F. Schlögl, A characteristic critical quantity in nonequilibrium phase transitions, Zeitschrift für Physik B Condensed Matter, 52 (1983), 51-60.   Google Scholar

[29]

L. ThevenetJ.-M. Buchot and J.-P. Raymond, Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 929-955.  doi: 10.1051/cocv/2009028.  Google Scholar

[30]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators North-Holland Publishing Company, 1978.  Google Scholar

[31]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkäuser, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

show all references

References:
[1]

R. Adams and J. Fournier, Sobolev Spaces, Academic Press, 2003.  Google Scholar

[2]

M. Badra, Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete Contin. Dyn. Syst., 32 (2012), 1169-1208.  doi: 10.3934/dcds.2012.32.1169.  Google Scholar

[3]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers. application to the Navier-Stokes system, SIAM Journal on Control and Optimization, 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[4]

V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM: Control, Optimisation and Calculus of Variations, 9 (2003), 197-206.  doi: 10.1051/cocv:2003009.  Google Scholar

[5]

V. BarbuI. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoirs of the American Mathematical Society, 181 (2006), x+128 pp.  doi: 10.1090/memo/0852.  Google Scholar

[6]

V. Barbu and G. Wang, Feedback stabilization of semilinear heat equations, in Abstract and Applied Analysis, Hindawi Publishing Corporation, 12 (2003), 697-714.  doi: 10.1155/S1085337503212100.  Google Scholar

[7]

P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: A state of the art survey, GAMM-Mitteilungen, 36 (2013), 32-52.  doi: 10.1002/gamm.201310003.  Google Scholar

[8]

A. Bensoussan, G. D. Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, vol. 1, Birkhäuser Boston, Inc. , Boston, MA, 1992.  Google Scholar

[9]

T. Breiten and K. Kunisch, Riccati-based feedback control of the monodomain equations with the FitzHugh-Nagumo model, SIAM Journal on Control and Optimization, 52 (2014), 4057-4081.  doi: 10.1137/140964552.  Google Scholar

[10]

T. Breiten and K. Kunisch, Compensator design for the monodomain equations with the Fitzhugh-Nagumo model, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 241-262.  doi: 10.1051/cocv/2015047.  Google Scholar

[11]

J. BurnsE. Sachs and L. Zietsman, Mesh independence of Kleinman-Newton iterations for Riccati equations in Hilbert space, SIAM Journal on Control and Optimization, 47 (2008), 2663-2692.  doi: 10.1137/060653962.  Google Scholar

[12]

E. CasasC. Ryll and F. Tröltzsch, Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation, SIAM Journal on Control and Optimization, 53 (2015), 2168-2202.  doi: 10.1137/140978855.  Google Scholar

[13]

R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[14]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society, 166 (2013), viii+114 pp. doi: 10.1090/memo/0788.  Google Scholar

[15]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006), 442-465.  doi: 10.1051/cocv:2006010.  Google Scholar

[16]

A. Fursikov and O. Imanuvilov, Controllability of Evolution Equations, Seoul National University, Korea, 1996, Lecture Notes no. 34.  Google Scholar

[17]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, SIAM, 1985.  Google Scholar

[18]

G. Grubb and V. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods, Mathematica Scandinavica, 69 (1991), 217-290.  doi: 10.7146/math.scand.a-12380.  Google Scholar

[19]

J. Keener and J. Sneyd, Mathematical Physiology, Vol. I: Cellular Physiology, vol. 8 of Interdisciplinary Applied Mathematics, 2nd edition, Springer, New York, 2009. doi: 10.1007/978-0-387-79388-7.  Google Scholar

[20]

D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Transactions on Automatic Control, 13 (1968), 114-115.  doi: 10.1109/TAC.1968.1098829.  Google Scholar

[21]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems: Continuous and Approximation Theories, Cambridge University Press, 2000.  Google Scholar

[22]

J. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. Ⅰ/Ⅱ, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Springer-Verlag, Berlin, 1972. Google Scholar

[23]

B. NielsenT. RuudG. Lines and A. Tveito, Optimal monodomain approximations of the bidomain equations, Applied Mathematics and Computation, 184 (2007), 276-290.  doi: 10.1016/j.amc.2006.05.158.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), 790-828.  doi: 10.1137/050628726.  Google Scholar

[26]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, Journal de Mathématiques Pures Et Appliquées, 87 (2007), 627-669.  doi: 10.1016/j.matpur.2007.04.002.  Google Scholar

[27]

O. Savin and E. Valdinoci, Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM Journal on Mathematical Analysis, 43 (2011), 2675-2687.  doi: 10.1137/110831040.  Google Scholar

[28]

F. Schlögl, A characteristic critical quantity in nonequilibrium phase transitions, Zeitschrift für Physik B Condensed Matter, 52 (1983), 51-60.   Google Scholar

[29]

L. ThevenetJ.-M. Buchot and J.-P. Raymond, Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 929-955.  doi: 10.1051/cocv/2009028.  Google Scholar

[30]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators North-Holland Publishing Company, 1978.  Google Scholar

[31]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkäuser, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

Figure 1.  Control setup
Figure 2.  Stabilization of perturbed initial state
Figure 3.  Stabilization of a reentry wave
Figure 4.  Stabilization of perturbed initial state
[1]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[2]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[3]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[4]

Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021006

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[7]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[10]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[11]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[12]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[13]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[14]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[17]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[18]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[19]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[20]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (62)
  • HTML views (58)
  • Cited by (1)

Other articles
by authors

[Back to Top]