An optimal control problem governed by a class of semilinear elliptic equations with nonlinear Neumann boundary conditions is studied in this paper. It is pointed out that the cost functional considered may not be convex. Using a relaxation method, some existence results of an optimal control are obtained.
Citation: |
[1] | H. Amann and M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1977), 779-790. doi: 10.1512/iumj.1978.27.27050. |
[2] | Z. Artstein, On a variational problem, J. Math. Anal. Appl., 45 (1974), 405-415. doi: 10.1016/0022-247X(74)90081-X. |
[3] | E. J. Balder, New existence results for optimal controls in the absence of convexity: The importance of extremality, SIAM J. Control Optim., 32 (1994), 890-916. doi: 10.1137/S0363012990193099. |
[4] | A. Cellinaand and G. Colombo, On a classical problem of the calculus of variations without convexity assumptions, Ann. Inst. H. Poincaré Anal. Non Linéaire., 7 (1990), 97-106. doi: 10.1016/S0294-1449(16)30306-7. |
[5] | L. Cesari, Optimization Theory and Applications, Problems with Ordinary Differential Equations, Spring, New York, 1983. doi: 10.1007/978-1-4613-8165-5. |
[6] | P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co. , Berlin, 1997. doi: 10.1515/9783110804775. |
[7] | F. Flores-Bazán and S. Perrotta, Nonconvex variational problems related to a hyperbolic equation, SIAM J. Control Optim, 37 (1999), 1751-1766. doi: 10.1137/S0363012998332299. |
[8] | G. Giuseppina and M. Federica, On the existence of optimal controls for SPDEs with boundary noise and boundary control, SIAM J. Control Optim., 51 (2013), 1909-1939. doi: 10.1137/110855855. |
[9] | V. O. Kapustyan and O. P. Kogut, On the existence of optimal coefficient controls for a nonlinear Neumann boundary value problem, Diff. Eqs., 46 (2010), 923-938. doi: 10.1134/S0012266110070013. |
[10] | X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser Boston, Cambridge, MA, 1995. doi: 10.1007/978-1-4612-4260-4. |
[11] | P. Lin and G. S. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255. doi: 10.1016/j.matpur.2013.06.001. |
[12] | H. W. Lou, Existence and nonexistence results of an optimal control problem by using relaxed control, SIAM J. Control Optim., 46 (2007), 1923-1941. doi: 10.1137/050628386. |
[13] | H. W. Lou, Analysis of the optimal relaxed control to an optimal control problem, Appl. Math. Optim., 59 (2009), 75-97. doi: 10.1007/s00245-008-9045-x. |
[14] | H. W. Lou, J. J. Wen and Y. S. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. F., 4 (2014), 289-314. doi: 10.3934/mcrf.2014.4.289. |
[15] | Q. Lü and G. S. Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations, SIAM J. Control Optim., 49 (2011), 1124-1149. doi: 10.1137/10081277X. |
[16] | S. Luan, Nonexistence and existence of an optimal control problem governed by a class of semilinear elliptic equations, J. Optim. Theory Appl., 158 (2013), 1-10. doi: 10.1007/s10957-012-0244-x. |
[17] | S. Luan, Nonexistence and existence results of an optimal control problem governed by a class of multisolution semilinear elliptic equations, Nonlinear Anal., 128 (2015), 380-390. doi: 10.1016/j.na.2015.08.015. |
[18] | E. J. McShane, Generalized curves, Duke Math. J., 6 (1940), 513-536. doi: 10.1215/S0012-7094-40-00642-1. |
[19] | L. W. Neustadt, The existence of optimal controls in the absence of convexity conditions, J. Math. Anal. Appl., 7 (1963), 110-117. doi: 10.1016/0022-247X(63)90081-7. |
[20] | K. D. Phung, G. S. Wang and X. Zhang, On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst. Ser. B., 8 (2007), 925-941. doi: 10.3934/dcdsb.2007.8.925. |
[21] | J. P. Raymond, Existence theorems in optimal control theory without convexity assumptions, J. Optim. Theory Appl., 67 (1990), 109-132. doi: 10.1007/BF00939738. |
[22] | J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. |
[23] | P. Winkert, $L^∞$ estimates for nonlinear elliptic Neumann boundary value problems, Nonlinear Differ. Equ. Appl., 17 (2010), 289-302. doi: 10.1007/s00030-009-0054-5. |
[24] | L. C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, C. R. Sci. Lettres Varsovie, C. Ⅲ., 30 (1937), 212-234. |