September  2017, 7(3): 493-506. doi: 10.3934/mcrf.2017018

On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions

School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, Guangdong 524048, China

* Corresponding author:Shu Luan

Received  May 2016 Revised  January 2017 Published  July 2017

Fund Project: This work was partially supported by the National Natural Science Foundation of China under grants 11301472 and 11601213, the Natural Science Foundation of Guangdong Province under grant 2014A030307011, the Training Program Project for Outstanding Young Teachers of Colleges and Universities in Guangdong Province under grant Yq2014116 and the Characteristic Innovation Project of Common Colleges and Universities in Guangdong Province under grant 2014KTSCX158

An optimal control problem governed by a class of semilinear elliptic equations with nonlinear Neumann boundary conditions is studied in this paper. It is pointed out that the cost functional considered may not be convex. Using a relaxation method, some existence results of an optimal control are obtained.

Citation: Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control & Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018
References:
[1]

H. Amann and M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1977), 779-790. doi: 10.1512/iumj.1978.27.27050. Google Scholar

[2]

Z. Artstein, On a variational problem, J. Math. Anal. Appl., 45 (1974), 405-415. doi: 10.1016/0022-247X(74)90081-X. Google Scholar

[3]

E. J. Balder, New existence results for optimal controls in the absence of convexity: The importance of extremality, SIAM J. Control Optim., 32 (1994), 890-916. doi: 10.1137/S0363012990193099. Google Scholar

[4]

A. Cellinaand and G. Colombo, On a classical problem of the calculus of variations without convexity assumptions, Ann. Inst. H. Poincaré Anal. Non Linéaire., 7 (1990), 97-106. doi: 10.1016/S0294-1449(16)30306-7. Google Scholar

[5]

L. Cesari, Optimization Theory and Applications, Problems with Ordinary Differential Equations, Spring, New York, 1983. doi: 10.1007/978-1-4613-8165-5. Google Scholar

[6]

P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co. , Berlin, 1997. doi: 10.1515/9783110804775. Google Scholar

[7]

F. Flores-Bazán and S. Perrotta, Nonconvex variational problems related to a hyperbolic equation, SIAM J. Control Optim, 37 (1999), 1751-1766. doi: 10.1137/S0363012998332299. Google Scholar

[8]

G. Giuseppina and M. Federica, On the existence of optimal controls for SPDEs with boundary noise and boundary control, SIAM J. Control Optim., 51 (2013), 1909-1939. doi: 10.1137/110855855. Google Scholar

[9]

V. O. Kapustyan and O. P. Kogut, On the existence of optimal coefficient controls for a nonlinear Neumann boundary value problem, Diff. Eqs., 46 (2010), 923-938. doi: 10.1134/S0012266110070013. Google Scholar

[10]

X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser Boston, Cambridge, MA, 1995. doi: 10.1007/978-1-4612-4260-4. Google Scholar

[11]

P. Lin and G. S. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255. doi: 10.1016/j.matpur.2013.06.001. Google Scholar

[12]

H. W. Lou, Existence and nonexistence results of an optimal control problem by using relaxed control, SIAM J. Control Optim., 46 (2007), 1923-1941. doi: 10.1137/050628386. Google Scholar

[13]

H. W. Lou, Analysis of the optimal relaxed control to an optimal control problem, Appl. Math. Optim., 59 (2009), 75-97. doi: 10.1007/s00245-008-9045-x. Google Scholar

[14]

H. W. LouJ. J. Wen and Y. S. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. F., 4 (2014), 289-314. doi: 10.3934/mcrf.2014.4.289. Google Scholar

[15]

Q. Lü and G. S. Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations, SIAM J. Control Optim., 49 (2011), 1124-1149. doi: 10.1137/10081277X. Google Scholar

[16]

S. Luan, Nonexistence and existence of an optimal control problem governed by a class of semilinear elliptic equations, J. Optim. Theory Appl., 158 (2013), 1-10. doi: 10.1007/s10957-012-0244-x. Google Scholar

[17]

S. Luan, Nonexistence and existence results of an optimal control problem governed by a class of multisolution semilinear elliptic equations, Nonlinear Anal., 128 (2015), 380-390. doi: 10.1016/j.na.2015.08.015. Google Scholar

[18]

E. J. McShane, Generalized curves, Duke Math. J., 6 (1940), 513-536. doi: 10.1215/S0012-7094-40-00642-1. Google Scholar

[19]

L. W. Neustadt, The existence of optimal controls in the absence of convexity conditions, J. Math. Anal. Appl., 7 (1963), 110-117. doi: 10.1016/0022-247X(63)90081-7. Google Scholar

[20]

K. D. PhungG. S. Wang and X. Zhang, On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst. Ser. B., 8 (2007), 925-941. doi: 10.3934/dcdsb.2007.8.925. Google Scholar

[21]

J. P. Raymond, Existence theorems in optimal control theory without convexity assumptions, J. Optim. Theory Appl., 67 (1990), 109-132. doi: 10.1007/BF00939738. Google Scholar

[22]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. Google Scholar

[23]

P. Winkert, $L^∞$ estimates for nonlinear elliptic Neumann boundary value problems, Nonlinear Differ. Equ. Appl., 17 (2010), 289-302. doi: 10.1007/s00030-009-0054-5. Google Scholar

[24]

L. C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, C. R. Sci. Lettres Varsovie, C. Ⅲ., 30 (1937), 212-234. Google Scholar

show all references

References:
[1]

H. Amann and M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1977), 779-790. doi: 10.1512/iumj.1978.27.27050. Google Scholar

[2]

Z. Artstein, On a variational problem, J. Math. Anal. Appl., 45 (1974), 405-415. doi: 10.1016/0022-247X(74)90081-X. Google Scholar

[3]

E. J. Balder, New existence results for optimal controls in the absence of convexity: The importance of extremality, SIAM J. Control Optim., 32 (1994), 890-916. doi: 10.1137/S0363012990193099. Google Scholar

[4]

A. Cellinaand and G. Colombo, On a classical problem of the calculus of variations without convexity assumptions, Ann. Inst. H. Poincaré Anal. Non Linéaire., 7 (1990), 97-106. doi: 10.1016/S0294-1449(16)30306-7. Google Scholar

[5]

L. Cesari, Optimization Theory and Applications, Problems with Ordinary Differential Equations, Spring, New York, 1983. doi: 10.1007/978-1-4613-8165-5. Google Scholar

[6]

P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co. , Berlin, 1997. doi: 10.1515/9783110804775. Google Scholar

[7]

F. Flores-Bazán and S. Perrotta, Nonconvex variational problems related to a hyperbolic equation, SIAM J. Control Optim, 37 (1999), 1751-1766. doi: 10.1137/S0363012998332299. Google Scholar

[8]

G. Giuseppina and M. Federica, On the existence of optimal controls for SPDEs with boundary noise and boundary control, SIAM J. Control Optim., 51 (2013), 1909-1939. doi: 10.1137/110855855. Google Scholar

[9]

V. O. Kapustyan and O. P. Kogut, On the existence of optimal coefficient controls for a nonlinear Neumann boundary value problem, Diff. Eqs., 46 (2010), 923-938. doi: 10.1134/S0012266110070013. Google Scholar

[10]

X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser Boston, Cambridge, MA, 1995. doi: 10.1007/978-1-4612-4260-4. Google Scholar

[11]

P. Lin and G. S. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255. doi: 10.1016/j.matpur.2013.06.001. Google Scholar

[12]

H. W. Lou, Existence and nonexistence results of an optimal control problem by using relaxed control, SIAM J. Control Optim., 46 (2007), 1923-1941. doi: 10.1137/050628386. Google Scholar

[13]

H. W. Lou, Analysis of the optimal relaxed control to an optimal control problem, Appl. Math. Optim., 59 (2009), 75-97. doi: 10.1007/s00245-008-9045-x. Google Scholar

[14]

H. W. LouJ. J. Wen and Y. S. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. F., 4 (2014), 289-314. doi: 10.3934/mcrf.2014.4.289. Google Scholar

[15]

Q. Lü and G. S. Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations, SIAM J. Control Optim., 49 (2011), 1124-1149. doi: 10.1137/10081277X. Google Scholar

[16]

S. Luan, Nonexistence and existence of an optimal control problem governed by a class of semilinear elliptic equations, J. Optim. Theory Appl., 158 (2013), 1-10. doi: 10.1007/s10957-012-0244-x. Google Scholar

[17]

S. Luan, Nonexistence and existence results of an optimal control problem governed by a class of multisolution semilinear elliptic equations, Nonlinear Anal., 128 (2015), 380-390. doi: 10.1016/j.na.2015.08.015. Google Scholar

[18]

E. J. McShane, Generalized curves, Duke Math. J., 6 (1940), 513-536. doi: 10.1215/S0012-7094-40-00642-1. Google Scholar

[19]

L. W. Neustadt, The existence of optimal controls in the absence of convexity conditions, J. Math. Anal. Appl., 7 (1963), 110-117. doi: 10.1016/0022-247X(63)90081-7. Google Scholar

[20]

K. D. PhungG. S. Wang and X. Zhang, On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst. Ser. B., 8 (2007), 925-941. doi: 10.3934/dcdsb.2007.8.925. Google Scholar

[21]

J. P. Raymond, Existence theorems in optimal control theory without convexity assumptions, J. Optim. Theory Appl., 67 (1990), 109-132. doi: 10.1007/BF00939738. Google Scholar

[22]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. Google Scholar

[23]

P. Winkert, $L^∞$ estimates for nonlinear elliptic Neumann boundary value problems, Nonlinear Differ. Equ. Appl., 17 (2010), 289-302. doi: 10.1007/s00030-009-0054-5. Google Scholar

[24]

L. C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, C. R. Sci. Lettres Varsovie, C. Ⅲ., 30 (1937), 212-234. Google Scholar

[1]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[2]

Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605

[3]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[4]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[5]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[6]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[7]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[8]

Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675

[9]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[10]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[11]

Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190

[12]

Piero Montecchiari, Paul H. Rabinowitz. A nondegeneracy condition for a semilinear elliptic system and the existence of 1- bump solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6995-7012. doi: 10.3934/dcds.2019241

[13]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[14]

B. Bonnard, J.-B. Caillau, E. Trélat. Geometric optimal control of elliptic Keplerian orbits. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 929-956. doi: 10.3934/dcdsb.2005.5.929

[15]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[16]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[17]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[18]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[19]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[20]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (17)
  • HTML views (19)
  • Cited by (0)

Other articles
by authors

[Back to Top]