December  2017, 7(4): 507-535. doi: 10.3934/mcrf.2017019

Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval

1. 

Russian Academy of Sciences, Central Economics and Mathematics Institute, Lomonosov Moscow State University, Moscow, Russia

2. 

Moscow Institute of Physics and Technology, Dolgoprudny, Russia, Russia 117418, Moscow, Nakhimovskii prospekt, 47, Russia

3. 

Systems Research Institute, Polish Academy of Sciences, Warszawa, Moscow State University of Civil Engineering, Russia

4. 

University of Technology and Humanities in Radom, Poland, 26-600 Radom, ul. Malczewskiego 20A, Poland

Received  December 2016 Revised  June 2017 Published  September 2017

We study an optimal control problem with a nonlinear Volterra-type integral equation considered on a nonfixed time interval, subject to endpoint constraints of equality and inequality type, mixed state-control constraints of inequality and equality type, and pure state constraints of inequality type. The main assumption is the linear–positive independence of the gradients of active mixed constraints with respect to the control. We obtain first-order necessary optimality conditions for an extended weak minimum, the notion of which is a natural generalization of the notion of weak minimum with account of variations of the time. The conditions obtained generalize the corresponding ones for problems with ordinary differential equations.

Citation: Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019
References:
[1]

V. L. Bakke, A maximum principle for an optimal control problem with integral constraints, J. Optim. Theory Appl., 13 (1974), 32-55.  doi: 10.1007/BF00935608.  Google Scholar

[2]

J. F. Bonnans and C. De La Vega, Optimal control of state constrained integral equations, Set-Valued Var. Anal., 18 (2010), 307-326.  doi: 10.1007/s11228-010-0154-8.  Google Scholar

[3]

J. F. BonnansX. Dupuis and C. De La Vega, First and second order optimality conditions for optimal control problems of state constrained integral equations, J. Optim. Theory Applic., 159 (2013), 1-40.  doi: 10.1007/s10957-013-0299-3.  Google Scholar

[4]

D. A. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 54 (1987), 43-61.  doi: 10.1007/BF00940404.  Google Scholar

[5]

C. De la Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 130 (2006), 79-93.  doi: 10.1007/s10957-006-9087-7.  Google Scholar

[6]

A. DmitrukA. A. Milyutin and N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema, Russian Math. Surveys, 35 (1980), 11-46,215.   Google Scholar

[7]

A. Dmitruk, Maximum principle for a general optimal control problem with state and regular mixed constraints, Computation Math. and Modeling, 4 (1993), 364-377.  doi: 10.1007/BF01128760.  Google Scholar

[8]

A. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints, SIAM J. on Control and Optimization, 52 (2014), 3437-3462.  doi: 10.1137/130921465.  Google Scholar

[9]

A. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval, Discrete and Continuous Dynamical Systems, Ser. A, 35 (2015), 4323-4343.  doi: 10.3934/dcds.2015.35.4323.  Google Scholar

[10]

D. FilatovaM. Grzywaczewski and N. Osmolovskii, Optimal control problems with integral equation as control object, Nonlinear Analysis, 72 (2010), 1235-1246.  doi: 10.1016/j.na.2009.08.008.  Google Scholar

[11]

R. F. Hartl and S. P. Sethi, Optimal control on a class of systems with continuous lags: Dynamic programming approach and economic interpretations, J. Optim. Theory Appl., 43 (1984), 73-88.  doi: 10.1007/BF00934747.  Google Scholar

[12]

M. I. Kamien and E. Muller, Optimal control with integral state equations, The Review of Economic Studies, 43 (1976), 469-473.  doi: 10.2307/2297225.  Google Scholar

[13]

L. Kantorovich and G. P. Akilov, Functional Analysis Pergamon Press, 1982.  Google Scholar

[14]

A. A. Milyutin, A. Dmitruk and N. P. Osmolovskii, Maximum Principle in Optimal Control Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 2004 (in Russian). Google Scholar

[15]

L. W. Neustadt, Optimization: A Theory of Necessary Conditions Princeton University Press, Princeton, New Jersey, 1976.  Google Scholar

[16]

L. S. Pontryagin, G. Boltyanskii, R. Gamkrelidze and E. F. Mischenko, The Mathematical Theory of Optimal Processes Moscow, Nauka, 1961 (in Russian), English translation: John Wiley & Sons, New York/London, 1962.  Google Scholar

[17]

R. Vinokurov, Optimal control of processes described by integral equations, SIAM J. on Control, 7 (1969), 324-355.   Google Scholar

show all references

References:
[1]

V. L. Bakke, A maximum principle for an optimal control problem with integral constraints, J. Optim. Theory Appl., 13 (1974), 32-55.  doi: 10.1007/BF00935608.  Google Scholar

[2]

J. F. Bonnans and C. De La Vega, Optimal control of state constrained integral equations, Set-Valued Var. Anal., 18 (2010), 307-326.  doi: 10.1007/s11228-010-0154-8.  Google Scholar

[3]

J. F. BonnansX. Dupuis and C. De La Vega, First and second order optimality conditions for optimal control problems of state constrained integral equations, J. Optim. Theory Applic., 159 (2013), 1-40.  doi: 10.1007/s10957-013-0299-3.  Google Scholar

[4]

D. A. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 54 (1987), 43-61.  doi: 10.1007/BF00940404.  Google Scholar

[5]

C. De la Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 130 (2006), 79-93.  doi: 10.1007/s10957-006-9087-7.  Google Scholar

[6]

A. DmitrukA. A. Milyutin and N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema, Russian Math. Surveys, 35 (1980), 11-46,215.   Google Scholar

[7]

A. Dmitruk, Maximum principle for a general optimal control problem with state and regular mixed constraints, Computation Math. and Modeling, 4 (1993), 364-377.  doi: 10.1007/BF01128760.  Google Scholar

[8]

A. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints, SIAM J. on Control and Optimization, 52 (2014), 3437-3462.  doi: 10.1137/130921465.  Google Scholar

[9]

A. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval, Discrete and Continuous Dynamical Systems, Ser. A, 35 (2015), 4323-4343.  doi: 10.3934/dcds.2015.35.4323.  Google Scholar

[10]

D. FilatovaM. Grzywaczewski and N. Osmolovskii, Optimal control problems with integral equation as control object, Nonlinear Analysis, 72 (2010), 1235-1246.  doi: 10.1016/j.na.2009.08.008.  Google Scholar

[11]

R. F. Hartl and S. P. Sethi, Optimal control on a class of systems with continuous lags: Dynamic programming approach and economic interpretations, J. Optim. Theory Appl., 43 (1984), 73-88.  doi: 10.1007/BF00934747.  Google Scholar

[12]

M. I. Kamien and E. Muller, Optimal control with integral state equations, The Review of Economic Studies, 43 (1976), 469-473.  doi: 10.2307/2297225.  Google Scholar

[13]

L. Kantorovich and G. P. Akilov, Functional Analysis Pergamon Press, 1982.  Google Scholar

[14]

A. A. Milyutin, A. Dmitruk and N. P. Osmolovskii, Maximum Principle in Optimal Control Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 2004 (in Russian). Google Scholar

[15]

L. W. Neustadt, Optimization: A Theory of Necessary Conditions Princeton University Press, Princeton, New Jersey, 1976.  Google Scholar

[16]

L. S. Pontryagin, G. Boltyanskii, R. Gamkrelidze and E. F. Mischenko, The Mathematical Theory of Optimal Processes Moscow, Nauka, 1961 (in Russian), English translation: John Wiley & Sons, New York/London, 1962.  Google Scholar

[17]

R. Vinokurov, Optimal control of processes described by integral equations, SIAM J. on Control, 7 (1969), 324-355.   Google Scholar

[1]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[2]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[3]

Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523

[4]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[5]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[6]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[7]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[8]

Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018

[9]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[10]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[11]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[12]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[13]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[14]

J.-P. Raymond, F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 431-450. doi: 10.3934/dcds.2000.6.431

[15]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[16]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[17]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[18]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[19]

J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341

[20]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (46)
  • HTML views (157)
  • Cited by (0)

Other articles
by authors

[Back to Top]