• Previous Article
    A stochastic control problem and related free boundaries in finance
  • MCRF Home
  • This Issue
  • Next Article
    Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval
December  2017, 7(4): 537-562. doi: 10.3934/mcrf.2017020

Controllability of fractional dynamical systems: A functional analytic approach

Department of Mathematics, Indian Institute of Space Science and Technology, Thiruvananthapuram-695 547, India

* Corresponding author: govindaraj.maths@gmail.com

Received  July 2016 Revised  January 2017 Published  September 2017

In this paper, we investigate controllability of fractional dynamical systems involving monotone nonlinearities of both Lipchitzian and non-Lipchitzian types. We invoke tools of nonlinear analysis like fixed point theorem and monotone operator theory to obtain controllability results for the nonlinear system. Examples are provided to illustrate the results. Controllability results of fractional dynamical systems with monotone nonlinearity is new.

Citation: Venkatesan Govindaraj, Raju K. George. Controllability of fractional dynamical systems: A functional analytic approach. Mathematical Control & Related Fields, 2017, 7 (4) : 537-562. doi: 10.3934/mcrf.2017020
References:
[1]

M. Axtell and M. E. Bise, Fractional calculus applications in control systems, Proceedings of the IEEE 1990 National Aerospace and Electronics conference, New York (1990), 563–566. doi: 10.1109/NAECON.1990.112826.  Google Scholar

[2]

R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real materials, Journal of Applied Mechanics, 51 (1984), 294-298.  doi: 10.1115/1.3167615.  Google Scholar

[3]

R. L. Bagley and R. A. Calico, Fractional order state equations for the control of viscoelastically damped structure, Journal of Guidance, Control and Dynamics, 14 (1991), 304-311.  doi: 10.2514/6.1989-1213.  Google Scholar

[4]

K. Balachandran and J. P. Dauer, Controllability of nonlinear systems via fixed-point theorem, Journal of Optimization Theory and Applications, 53 (1987), 345-352.  doi: 10.1007/BF00938943.  Google Scholar

[5]

K. BalachandranJ. Y. Park and J. J. Trujillo, Controllability of nonlinear fractional dynamical systems, Nonlinear Analysis, 75 (2012), 1919-1926.  doi: 10.1016/j.na.2011.09.042.  Google Scholar

[6]

K. BalachandranJ. Kokila and J. J. Trujillo, Relative controllability of fractional dynamical systems with multiple delays in control, Computer and Mathematics with Applications, 64 (2012), 3037-3045.  doi: 10.1016/j.camwa.2012.01.071.  Google Scholar

[7]

K. BalachandranV. GovindarajL. Rodriguez-Germá and J. J. Trujillo, Controllability of nonlinear higher order fractional dynamical systems, Nonlinear Dynamics, 71 (2013), 605-612.  doi: 10.1007/s11071-012-0612-y.  Google Scholar

[8]

K. BalachandranV. GovindarajL. Rodriguez-Germá and J. J. Trujillo, Controllability results for nonlinear fractional-order dynamical systems, Journal of Optimization Theory and Applications, 156 (2013), 33-44.  doi: 10.1007/s10957-012-0212-5.  Google Scholar

[9]

K. Balachandran and V. Govindaraj, Numerical controllability of fractional dynamical systems, Optimization, 63 (2014), 1267-1279.  doi: 10.1080/02331934.2014.906416.  Google Scholar

[10]

K. BalachandranV. GovindarajM. Rivero and J. J. Trujillo, Controllability of fractional damped dynamical systems, Applied Mathematics and Computation, 257 (2015), 66-73.  doi: 10.1016/j.amc.2014.12.059.  Google Scholar

[11]

M. Bettayeb and S. Djennoune, New results on the controllability and observability of fractional dynamical systems, Journal of Vibration and Control, 14 (2008), 1531-1541.  doi: 10.1177/1077546307087432.  Google Scholar

[12]

Y. ChenH. S. Ahn and D. Xue, Robust controllability of interval fractional order linear time invariant systems, Signal Processing, 86 (2006), 2794-2802.  doi: 10.1115/DETC2005-84744.  Google Scholar

[13]

V. Dolezal, Monotone Operators and Applications in Control and Network Theory Elsevier Scientific Publishing Company, Amsterdam, 1979.  Google Scholar

[14]

S. GuermahS. Djennoune and M. Bettayeb, Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer, 18 (2008), 213-222.  doi: 10.2478/v10006-008-0019-6.  Google Scholar

[15]

P. Hess, On nonlinear equations of Hammerstein type in Banach spaces, Proceedings of the American Mathematical Society, 30 (1971), 308-312.  doi: 10.1090/S0002-9939-1971-0282268-X.  Google Scholar

[16]

M. C. Joshi, On the existence of an optimal control in Banach spaces, Bulletin of the Australian Mathematical Society, 27 (1983), 395-401.  doi: 10.1017/S0004972700025892.  Google Scholar

[17]

M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis Wiley Eastern Limited, New Delhi, 1985.  Google Scholar

[18]

M. C. Joshi and T. E. Govindan, Stochastic global stability of random feed-back system, Stochastic Analysis and Applications, 7 (1989), 169-186.  doi: 10.1080/07362998908809175.  Google Scholar

[19]

M. C. Joshi and R. K. George, Controllability of nonlinear systems, Numerical Functional Analysis and Optimization, 10 (1989), 139-166.  doi: 10.1080/01630568908816296.  Google Scholar

[20]

T. Kaczorek, Selected Problems of Fractional Systems Theory Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-20502-6.  Google Scholar

[21]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations Elsevier, Amsterdam, 2006.  Google Scholar

[22]

J. Klamka, Controllability of dynamical systems -a survey, Arch. Control Sci., 2 (1993), 283-310.   Google Scholar

[23]

J. A. T. Machado, Analysis and design of fractional order digital control systems, Systems Analysis Modelling Simulation, 27 (1997), 107-122.   Google Scholar

[24]

R. Magin, Fractional Calculus in Bioengineering Begell House Inc. , Redding, 2006. Google Scholar

[25]

D. Matignon and B. d'Andréa-Novel, Some results on controllability and observability of finite dimensional fractional differential systems, Proceedings of the IAMCS, IEEE Conference on Systems, Man and Cybernetics Lille, France, (1996), 952–956. Google Scholar

[26]

C. A. Monje, Y. Q. Chen, B. M. Vinagre, X. Xue and V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications Springer, London, 2010. doi: 10.1007/978-1-84996-335-0.  Google Scholar

[27]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian Journal of Mathematics, 26 (2010), 210-221.   Google Scholar

[28]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems, Signal Processing, 91 (2011), 379-385.  doi: 10.1016/j.sigpro.2010.07.016.  Google Scholar

[29]

I. Petráŝ, Control of fractional order Chua's system, Journal of Electrical Engineering, 53 (2002), 219-222.   Google Scholar

[30]

I. Podlubny, Fractional Differential Equations Academic Press, New York, 1999.  Google Scholar

[31]

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & sons, Canada, 1980.  Google Scholar

[32]

B. M. Vinagre, C. A. Monje and A. J. Calderon, Fractional order systems and fractional order control actions, Lecture 3 of the IEEE CDCO2 TW# 2: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, 2002. Google Scholar

show all references

References:
[1]

M. Axtell and M. E. Bise, Fractional calculus applications in control systems, Proceedings of the IEEE 1990 National Aerospace and Electronics conference, New York (1990), 563–566. doi: 10.1109/NAECON.1990.112826.  Google Scholar

[2]

R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real materials, Journal of Applied Mechanics, 51 (1984), 294-298.  doi: 10.1115/1.3167615.  Google Scholar

[3]

R. L. Bagley and R. A. Calico, Fractional order state equations for the control of viscoelastically damped structure, Journal of Guidance, Control and Dynamics, 14 (1991), 304-311.  doi: 10.2514/6.1989-1213.  Google Scholar

[4]

K. Balachandran and J. P. Dauer, Controllability of nonlinear systems via fixed-point theorem, Journal of Optimization Theory and Applications, 53 (1987), 345-352.  doi: 10.1007/BF00938943.  Google Scholar

[5]

K. BalachandranJ. Y. Park and J. J. Trujillo, Controllability of nonlinear fractional dynamical systems, Nonlinear Analysis, 75 (2012), 1919-1926.  doi: 10.1016/j.na.2011.09.042.  Google Scholar

[6]

K. BalachandranJ. Kokila and J. J. Trujillo, Relative controllability of fractional dynamical systems with multiple delays in control, Computer and Mathematics with Applications, 64 (2012), 3037-3045.  doi: 10.1016/j.camwa.2012.01.071.  Google Scholar

[7]

K. BalachandranV. GovindarajL. Rodriguez-Germá and J. J. Trujillo, Controllability of nonlinear higher order fractional dynamical systems, Nonlinear Dynamics, 71 (2013), 605-612.  doi: 10.1007/s11071-012-0612-y.  Google Scholar

[8]

K. BalachandranV. GovindarajL. Rodriguez-Germá and J. J. Trujillo, Controllability results for nonlinear fractional-order dynamical systems, Journal of Optimization Theory and Applications, 156 (2013), 33-44.  doi: 10.1007/s10957-012-0212-5.  Google Scholar

[9]

K. Balachandran and V. Govindaraj, Numerical controllability of fractional dynamical systems, Optimization, 63 (2014), 1267-1279.  doi: 10.1080/02331934.2014.906416.  Google Scholar

[10]

K. BalachandranV. GovindarajM. Rivero and J. J. Trujillo, Controllability of fractional damped dynamical systems, Applied Mathematics and Computation, 257 (2015), 66-73.  doi: 10.1016/j.amc.2014.12.059.  Google Scholar

[11]

M. Bettayeb and S. Djennoune, New results on the controllability and observability of fractional dynamical systems, Journal of Vibration and Control, 14 (2008), 1531-1541.  doi: 10.1177/1077546307087432.  Google Scholar

[12]

Y. ChenH. S. Ahn and D. Xue, Robust controllability of interval fractional order linear time invariant systems, Signal Processing, 86 (2006), 2794-2802.  doi: 10.1115/DETC2005-84744.  Google Scholar

[13]

V. Dolezal, Monotone Operators and Applications in Control and Network Theory Elsevier Scientific Publishing Company, Amsterdam, 1979.  Google Scholar

[14]

S. GuermahS. Djennoune and M. Bettayeb, Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer, 18 (2008), 213-222.  doi: 10.2478/v10006-008-0019-6.  Google Scholar

[15]

P. Hess, On nonlinear equations of Hammerstein type in Banach spaces, Proceedings of the American Mathematical Society, 30 (1971), 308-312.  doi: 10.1090/S0002-9939-1971-0282268-X.  Google Scholar

[16]

M. C. Joshi, On the existence of an optimal control in Banach spaces, Bulletin of the Australian Mathematical Society, 27 (1983), 395-401.  doi: 10.1017/S0004972700025892.  Google Scholar

[17]

M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis Wiley Eastern Limited, New Delhi, 1985.  Google Scholar

[18]

M. C. Joshi and T. E. Govindan, Stochastic global stability of random feed-back system, Stochastic Analysis and Applications, 7 (1989), 169-186.  doi: 10.1080/07362998908809175.  Google Scholar

[19]

M. C. Joshi and R. K. George, Controllability of nonlinear systems, Numerical Functional Analysis and Optimization, 10 (1989), 139-166.  doi: 10.1080/01630568908816296.  Google Scholar

[20]

T. Kaczorek, Selected Problems of Fractional Systems Theory Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-20502-6.  Google Scholar

[21]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations Elsevier, Amsterdam, 2006.  Google Scholar

[22]

J. Klamka, Controllability of dynamical systems -a survey, Arch. Control Sci., 2 (1993), 283-310.   Google Scholar

[23]

J. A. T. Machado, Analysis and design of fractional order digital control systems, Systems Analysis Modelling Simulation, 27 (1997), 107-122.   Google Scholar

[24]

R. Magin, Fractional Calculus in Bioengineering Begell House Inc. , Redding, 2006. Google Scholar

[25]

D. Matignon and B. d'Andréa-Novel, Some results on controllability and observability of finite dimensional fractional differential systems, Proceedings of the IAMCS, IEEE Conference on Systems, Man and Cybernetics Lille, France, (1996), 952–956. Google Scholar

[26]

C. A. Monje, Y. Q. Chen, B. M. Vinagre, X. Xue and V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications Springer, London, 2010. doi: 10.1007/978-1-84996-335-0.  Google Scholar

[27]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian Journal of Mathematics, 26 (2010), 210-221.   Google Scholar

[28]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems, Signal Processing, 91 (2011), 379-385.  doi: 10.1016/j.sigpro.2010.07.016.  Google Scholar

[29]

I. Petráŝ, Control of fractional order Chua's system, Journal of Electrical Engineering, 53 (2002), 219-222.   Google Scholar

[30]

I. Podlubny, Fractional Differential Equations Academic Press, New York, 1999.  Google Scholar

[31]

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & sons, Canada, 1980.  Google Scholar

[32]

B. M. Vinagre, C. A. Monje and A. J. Calderon, Fractional order systems and fractional order control actions, Lecture 3 of the IEEE CDCO2 TW# 2: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, 2002. Google Scholar

Figure 1.  The trajectory of the system (29) steers from the initial state $\left[\begin{array}{r}0\\ 0\end{array}\right]$ to the finial state $\left[\begin{array}{r}1\\ -1\end{array}\right]$ during the interval $[0, 1]$
Figure 2.  The steering control $u(t)$ of the system (29) during the interval $[0, 1]$
[1]

Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719

[2]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[3]

Rajesh Dhayal, Muslim Malik, Syed Abbas, Anil Kumar, Rathinasamy Sakthivel. Approximation theorems for controllability problem governed by fractional differential equation. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020073

[4]

Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020421

[5]

Hua Liu, Zhaosheng Feng. Begehr-Hile operator and its applications to some differential equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 387-395. doi: 10.3934/cpaa.2010.9.387

[6]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[7]

Yanqing Wang, Donghui Yang, Jiongmin Yong, Zhiyong Yu. Exact controllability of linear stochastic differential equations and related problems. Mathematical Control & Related Fields, 2017, 7 (2) : 305-345. doi: 10.3934/mcrf.2017011

[8]

Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090

[9]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

[10]

Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233

[11]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[12]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[13]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[14]

Kasthurisamy Jothimani, Kalimuthu Kaliraj, Sumati Kumari Panda, Kotakkaran Sooppy Nisar, Chokkalingam Ravichandran. Results on controllability of non-densely characterized neutral fractional delay differential system. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020083

[15]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[16]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[17]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042

[18]

Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020336

[19]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020180

[20]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (93)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]