• Previous Article
    Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls
  • MCRF Home
  • This Issue
  • Next Article
    Second order optimality conditions for optimal control of quasilinear parabolic equations
March  2018, 8(1): 35-56. doi: 10.3934/mcrf.2018002

Optimal voltage control of non-stationary eddy current problems

1. 

Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany,

2. 

Dipartimento di Matematica, Università di Trento, 38123 Trento, Italy

* Corresponding author: Fredi Tröltzsch

Dedicated to Prof. Dr. Eduardo Casas on the occasion of his 60th birthday

Received  March 2017 Revised  September 2017 Published  January 2018

Fund Project: The first author was supported by Einstein Center for Mathematics Berlin (ECMath), project D-SE9. The second author is pleased to thank the Institute of Mathematics of the Technische Universität Berlin, the Research Center Matheon and the Einstein Center for Mathematics Berlin (ECMath) for their kind hospitality.

A mathematical model is set up that can be useful for controlled voltage excitation in time-dependent electromagnetism.The well-posedness of the model is proved and an associated optimal control problem is investigated. Here, the controlfunction is a transient voltage and the aim of the control is the best approximation of desired electric and magnetic fields insuitable $L^2$-norms.Special emphasis is laid on an adjoint calculus for first-order necessary optimality conditions.Moreover, a peculiar attention is devoted to propose a formulation for which the computational complexity of the finite element solution method is substantially reduced.

Citation: Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control & Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002
References:
[1]

A. Alonso RodríguezE. BertolazziR. Ghiloni and A. Valli, Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems, SIAM J. Numer. Anal., 51 (2013), 2380-2402.   Google Scholar

[2]

A. Alonso RodríguezE. BertolazziR. Ghiloni and A. Valli, Finite element simulation of eddy current problems using magnetic scalar potentials, J. Comput. Phys., 294 (2015), 503-523.   Google Scholar

[3]

A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations, Springer-Verlag Italia, Milan, 2010.  Google Scholar

[4]

L. Arnold and B. von Harrach, A unified variational formulation for the parabolic-elliptic eddy current equations, SIAM J. Appl. Math., 72 (2012), 558-576.   Google Scholar

[5]

A. BermudezB. López RodríguezR. Rodríguez and P. Salgado, Numerical solution of transient eddy current problems with input current intensities as boundary data, IMA J. Numer. Anal., 32 (2012), 1001-1029.   Google Scholar

[6]

V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations, ESAIM Math. Model. Numer. Anal., 50 (2016), 237-261.   Google Scholar

[7]

A. Bossavit, Most general 'non-local' boundary conditions for the Maxwell equations in a bounded region, COMPEL, 19 (2000), 239-245.   Google Scholar

[8]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Springer-Verlag, Berlin, 1992.  Google Scholar

[9]

P. E. DruetO. KleinJ. SprekelsF. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects, SIAM J. Control Optim., 49 (2011), 1707-1736.   Google Scholar

[10]

R. Griesse and K. Kunisch, Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Optim., 45 (2006), 1822-1845.   Google Scholar

[11]

M. Gunzburger and C. Trenchea, Analysis and discretization of an optimal control problem for the time-periodic MHD equations, J. Math. Anal. Appl., 308 (2005), 440-466.   Google Scholar

[12]

M. Hinze, Control of weakly conductive fluids by near wall Lorentz forces, GAMM-Mitt., 30 (2007), 149-158.   Google Scholar

[13]

D. Hömberg and J. Sokołowski, Optimal shape design of inductor coils for surface hardening, Numer. Funct. Anal. Optim., 42 (2003), 1087-1117.   Google Scholar

[14]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Math. Comput. Modelling, 38 (2003), 1003-1028.   Google Scholar

[15]

L. S. Hou and A. J. Meir, Boundary optimal control of MHD flows, Appl. Math. Optim., 32 (1995), 143-162.   Google Scholar

[16]

L. S. Hou and S. S. Ravindran, Computations of boundary optimal control problems for an electrically conducting fluid, J. Comput. Phys., 128 (1996), 319-330.   Google Scholar

[17]

M. Kolmbauer, The Multiharmonic Finite Element and Boundary Element Method for Simulation and Control of Eddy Current Problems, Ph.D thesis, Johannes Kepler University Linz, 2012. Google Scholar

[18]

M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), B785-B809.  Google Scholar

[19]

P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  Google Scholar

[20]

S. NicaiseS. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields, Comput. Methods Appl. Math., 14 (2014), 555-573.   Google Scholar

[21]

S. NicaiseS. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 579-605.   Google Scholar

[22]

S. Nicaise and F. Tröltzsch, Optimal control of some quasilinear Maxwell equations of parabolic type, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 1375-1391.   Google Scholar

[23]

S. S. Ravindran, Real-time computational algorithm for optimal control of an MHD flow system, SIAM J. Sci. Comput., 26 (2005), 1369-1388.   Google Scholar

[24]

F. Tröltzsch and A. Valli, Modeling and control of low-frequency electromagnetic fields in multiply connected conductors, In System Modeling and Optimization (eds. L. Bociu, J.-A. Desideri, and A. Habbal), Springer, (2017), 505-516. Google Scholar

[25]

F. Tröltzsch and A. Valli, Optimal control of low-frequency electromagnetic fields in multiply connected conductors, Optimization, 65 (2016), 1651-1673.   Google Scholar

[26]

I. Yousept, Optimal control of Maxwell's equations with regularized state constraints, Comput. Optim. Appl., 52 (2012), 559-581.   Google Scholar

[27]

I. Yousept, Optimal bilinear control of eddy current equations with grad-div regularization, J. Numer. Math., 23 (2015), 81-98.   Google Scholar

[28]

I. Yousept and F. Tröltzsch, PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages, ESAIM Math. Model. Numer. Anal., 46 (2012), 709-729.   Google Scholar

show all references

References:
[1]

A. Alonso RodríguezE. BertolazziR. Ghiloni and A. Valli, Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems, SIAM J. Numer. Anal., 51 (2013), 2380-2402.   Google Scholar

[2]

A. Alonso RodríguezE. BertolazziR. Ghiloni and A. Valli, Finite element simulation of eddy current problems using magnetic scalar potentials, J. Comput. Phys., 294 (2015), 503-523.   Google Scholar

[3]

A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations, Springer-Verlag Italia, Milan, 2010.  Google Scholar

[4]

L. Arnold and B. von Harrach, A unified variational formulation for the parabolic-elliptic eddy current equations, SIAM J. Appl. Math., 72 (2012), 558-576.   Google Scholar

[5]

A. BermudezB. López RodríguezR. Rodríguez and P. Salgado, Numerical solution of transient eddy current problems with input current intensities as boundary data, IMA J. Numer. Anal., 32 (2012), 1001-1029.   Google Scholar

[6]

V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations, ESAIM Math. Model. Numer. Anal., 50 (2016), 237-261.   Google Scholar

[7]

A. Bossavit, Most general 'non-local' boundary conditions for the Maxwell equations in a bounded region, COMPEL, 19 (2000), 239-245.   Google Scholar

[8]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Springer-Verlag, Berlin, 1992.  Google Scholar

[9]

P. E. DruetO. KleinJ. SprekelsF. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects, SIAM J. Control Optim., 49 (2011), 1707-1736.   Google Scholar

[10]

R. Griesse and K. Kunisch, Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Optim., 45 (2006), 1822-1845.   Google Scholar

[11]

M. Gunzburger and C. Trenchea, Analysis and discretization of an optimal control problem for the time-periodic MHD equations, J. Math. Anal. Appl., 308 (2005), 440-466.   Google Scholar

[12]

M. Hinze, Control of weakly conductive fluids by near wall Lorentz forces, GAMM-Mitt., 30 (2007), 149-158.   Google Scholar

[13]

D. Hömberg and J. Sokołowski, Optimal shape design of inductor coils for surface hardening, Numer. Funct. Anal. Optim., 42 (2003), 1087-1117.   Google Scholar

[14]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Math. Comput. Modelling, 38 (2003), 1003-1028.   Google Scholar

[15]

L. S. Hou and A. J. Meir, Boundary optimal control of MHD flows, Appl. Math. Optim., 32 (1995), 143-162.   Google Scholar

[16]

L. S. Hou and S. S. Ravindran, Computations of boundary optimal control problems for an electrically conducting fluid, J. Comput. Phys., 128 (1996), 319-330.   Google Scholar

[17]

M. Kolmbauer, The Multiharmonic Finite Element and Boundary Element Method for Simulation and Control of Eddy Current Problems, Ph.D thesis, Johannes Kepler University Linz, 2012. Google Scholar

[18]

M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), B785-B809.  Google Scholar

[19]

P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  Google Scholar

[20]

S. NicaiseS. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields, Comput. Methods Appl. Math., 14 (2014), 555-573.   Google Scholar

[21]

S. NicaiseS. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 579-605.   Google Scholar

[22]

S. Nicaise and F. Tröltzsch, Optimal control of some quasilinear Maxwell equations of parabolic type, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 1375-1391.   Google Scholar

[23]

S. S. Ravindran, Real-time computational algorithm for optimal control of an MHD flow system, SIAM J. Sci. Comput., 26 (2005), 1369-1388.   Google Scholar

[24]

F. Tröltzsch and A. Valli, Modeling and control of low-frequency electromagnetic fields in multiply connected conductors, In System Modeling and Optimization (eds. L. Bociu, J.-A. Desideri, and A. Habbal), Springer, (2017), 505-516. Google Scholar

[25]

F. Tröltzsch and A. Valli, Optimal control of low-frequency electromagnetic fields in multiply connected conductors, Optimization, 65 (2016), 1651-1673.   Google Scholar

[26]

I. Yousept, Optimal control of Maxwell's equations with regularized state constraints, Comput. Optim. Appl., 52 (2012), 559-581.   Google Scholar

[27]

I. Yousept, Optimal bilinear control of eddy current equations with grad-div regularization, J. Numer. Math., 23 (2015), 81-98.   Google Scholar

[28]

I. Yousept and F. Tröltzsch, PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages, ESAIM Math. Model. Numer. Anal., 46 (2012), 709-729.   Google Scholar

Figure 1.  The computational domain $\Omega$ with the conductor $\Omega_C$ and the electric ports $\Gamma_E$ and $\Gamma_J$ .
Figure 2.  A first alternative geometrical configuration: a connected conductor $\Omega_C$ with five electric ports.
Figure 3.  A second alternative geometrical configuration: a non-connected conductor $\Omega_C$ with four electric ports.
Figure 4.  A third alternative geometrical configuration: a non-connected conductor $\Omega_C$ with two electric ports.
[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (86)
  • HTML views (258)
  • Cited by (1)

Other articles
by authors

[Back to Top]